Exam Skills Booklets

Answers

Торіс	Page Number														
1&2	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>		
3	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>
	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>	<u>21</u>	22	<u>23</u>							
4 & 5	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>						
9	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>
	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>	<u>21</u>	22	<u>23</u>	<u>24</u>	<u>25</u>	<u>26</u>	<u>27</u>	<u>28</u>	<u>29</u>	<u>30</u>
12 & 13	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>											

November 2011

(c) After the 3 seconds, the weight lifter drops the mass. The velocity of the mass just before it hits the floor is 6.4 m/s.

Calculate the momentum of the mass just before it hits the floor. State the unit.

(3)

The mass is 240Kg

Question Number	Answer	Acceptable answers	Mark
1(c)	substitution (1) 240 × 6.4		
	evaluation (1) 1500	1536 give (2) marks for correct answer, no working	
	Unit (1) kg m/s independent mark	Ns	<mark>(</mark> 3)

March 2012

(b) The mass of one water drop is 0.000 08 kg.

Calculate its weight.

(gravitational field strength is 10 N/kg)

(2)

Question Number	Answer	Acceptable answers	Mark
6 (b)	Substitution weight = 0.00008 x 10 (1) evaluation 0.0008 (N) (1)	8 x 10 ⁻⁴ 1/1250	(2)

Question Number	Answer	Acceptable answers	Mark
6 (c)	Substitution speed = 13 / 1.7 (1) evaluation	An answer which rounds to 7.6 eg 7.647 7.65	(2)
	7.6 (m/s) (1)	7.7	

(ii) The car now accelerates in a straight line. Its average acceleration is 12 m/s².

Calculate the increase in velocity of the car in 4.0 s.

(3)

Question Number	Answer	Acceptable answers	Mark
5 (a) (ii)	<pre>transposition: (1) {change in) speed= accelerationxtime substitution: (1) speed = 12 x 4 evaluation: (1) 48 (m/s) (1)</pre>	transposition and substitution can be in either order substitution mark can be scored when incorrectly transposed word/symbol equation is given	
		Give full marks for correct answer no working	(3)

4 (a) The diagram shows a bullet moving towards a wooden block.

170 m/s bullet

Question Number	Answer	Acceptable answers	Mark
4(a)(i)	momentum = $0.03 \times 170(1)$	Accept 5.1 seen	(1)

Question Number	Answer	Acceptable answers	Mark
4(a)(ii)	momentum before = momentum after (1)	allow 5.0 = 0.80 x v for 1 mark max	
	$5.1 = 0.83 \times v(1)$	5.0 = 0.83 x v	
	v = 6.1 (m/s) (1)	v = 6.0 (m/s) allow ecf from (a)(i) give full marks for correct	(3)
		answer, no working	

velocity = m/s

March 2013

2 Andrew skis down a hill.

Question Number	Answer	Acceptable answers	Mark
2(b)(i)	substitution (1) 67×31		(2)
	evaluation (1) 2077 (kg m/s)	2080, 2100 working backwards using 2000 (v=) 29.85, 30 (m=) 64.52, 65 67 X 31=2000 scores only one mark	

Question Number	Answer	Acceptable answers	Mark
	substitution (1) 2000 ÷ 2.3 evaluation (1) 870 (N)	answer to (b)(i)) ÷ 2.3 900, 869.6, 869.5 903	(2)

(iii) The child and cart have a total mass of 50 kg. They travel at a velocity of 4 m/s.

Calculate the momentum of the child and cart.

(2)

Question Number	Answer	Acceptable answers	Mark
3 a(iii)	Substitution 50 x 4 (1)		
	Evaluation 200 (kg m/s) (1)	Allow full marks for correct answer with no working shown	(2)

Question Number	Answer		Acceptable answers	Mark
3 a(iv)	Substitution 450 / 1.5	(1)		
	Evaluation 300 (N)	(1)	Allow full marks for correct answer with no working shown Allow (1) for 167 (N) obtained by 450-200 / 1.5	(2)

force =N

... . . .

(c) Both vehicles are travelling at 13 m/s.

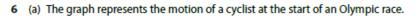
The driver of the truck then accelerates at 1.2 m/s² until both vehicles are travelling at 20 m/s.

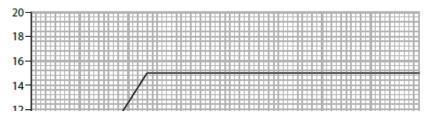
.

Question Number	Answer	Acceptable answers	Mark
4(c)(i)	Substitution (1) 1.2 = (20 - 13) / t	1.2 = 7 / t	
	Transposition (1) t = (20-13)/1.2	t = 7/1.2	
	Evaluation 5.8 (s) (1) substitution and transposition can be in either order	5.833 (etc) Give full marks for correct answer, no working	(3)

Question Number	Answer	Acceptable answers	Mark
4(c) (ii)	Substitution 1400 x 1.2 (1)		
	Evaluation 1700 (N) (1)	1680 Allow full marks for correct answer with no working shown	(2)

(d) When the car and passengers reach E, they have a total momentum of 150 000 kg m/s.


The total mass of the car and passengers is 9500 kg.


Calculate the velocity of the car and passengers at E.

(3)

Question Number	Answer	Acceptable answers	Mark
3(d)	Substitution into $p = m \times v$ (1) 150 000 = 9 500 x v	Substitution and transposition can be in either order	(3)
	Transposition: (1) $v = 150\ 000\ /\ 9\ 500$		
	evaluation: (1) 16 (m/s)	Answers which round to 16 such as 15.8, 15.79 etc	
		Allow full marks for correct answer with no working shown	

Forces and motion

Question Number	Answer	Acceptable answers	Mark
6ai	evidence of calculation of gradient of graph during acceleration: (1) Evaluation: (1) 6.3 (m/s ²)	Allow full marks for correct answer with no working shown accept values from 6.0 to 6.5 inclusive	(2)

Question Number	Answer	Acceptable answers	Mark
6aii	Line with smaller initial gradient and then horizontal at 17 m/s (1)	Ignore time at which acceleration stops. Judge horizontal value by eye but do not accept any part of line which goes outside range of 16 to 18	

acceleration = m/s²

 (ii) Another cyclist has a smaller initial acceleration but then reaches a constant velocity of 17 m/s.
 Draw her motion on the graph above. 5 (b) The mass of the skateboard is 1.8 kg and the mass of the skateboarder is 42 kg.

Calculate the velocity at which the skateboard moves backwards if the skateboarder jumps forwards at a velocity of 0.3 m/s.

5(b)	7	accept –7 for 3 marks	3	AO2
		allow 2 marks for momentum of skateboarder equals 12.6 or $0 = 42 \times 0.3 + (1.8 \times -v)$ or allow 1 mark for stating use of conservation of momentum		2.2.2b

Velocity of skateboard = m/s

1 (b) Figure 1 shows how ultrasound is used to measure the depth of water below a ship.

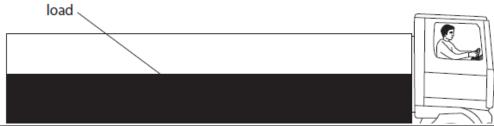
1(b)	640	an answer of 1000 mains 2	3	AO2
		an answer of 1280 gains 2 marks		3.1.2c
		allow 2 marks for the correct substitution ie 1600 × 0.40 provided no subsequent step		
		allow 2 marks for the substitution $\frac{1600 \times 0.80}{2}$		
		provided no subsequent step		
		allow 1 mark for the substitution 1600 × 0.80 provided no subsequent step		
		allow 1 mark for the identification that time (boat to bed) is 0.4		

4 (c) The car did not stop in time. It collided with the stationary car in front, joining the two cars together.

Figure 5 shows both cars, just before and just after the collision.

4(c)(i)	momentum before = momentum after or		1	AO1 2.2.2b	E
	(total) momentum stays the same	accept no momentum is lost accept no momentum is gained ignore statements referring to energy			

4 1-1	"\ The mean where of the time even where even a				·
4(c)(ii)	5	allow 2 marks for correctly obtaining momentum before as 12 000 or allow 2 marks for 1500 x 8 = 2400 x v or allow 1 mark for a relevant statement re conservation of momentum or allow 1 mark for momentum before = 1500 x 8	3	AO2 2.2.2a/b	E


iGCSE January 2015

(b) (i)	(average) speed = distance moved taken	= <u>(total)</u> (total) time	allow defined symbols ignore `triangles'	1
(ii)	Substitution; Calculation; Matching unit;		allow both substitution and calculation marks for a correct value without working	3
	e.g. Average speed = = 0.0145 = 0.015 m/s	<u>6.1</u> (7x 60)	allow 6.1, or ecf for distance 7 for time allow alternatives with compatible unit, e.g. 1.45 cm/s OR 1.5 cm/s 14.5 mm/s OR 15 mm/s 0.87 m/minutes 87 cm/minute 870 mm/minute Allow for 1 mark	

(b) The speed of light in a vacuum is 300 000 km/s.

(1.)			
(b)	rearrangement and correct substitution; factor of 2 taken into account; value given to at least 2 significant figures;	working must be shown	3
	e.g. Time to reach moon = ½ x 2.6 = 1.3 (s) Distance = time x speed = 1.3 x 300 000 = 390 000 (km)	Reverse argument (starting with 400000 km) allow 2 max	
	OR		
	Total distance = $2.6 \times 300\ 000 =$ 780 000 So distance to moon = $\frac{1}{2} \times 780$ 000 = 390 000 (km)		

4 A lorry carries a load of hot asphalt – a runny mixture of small stones and tar.

Question		Answer	Notes	Marks	
4	(a)	(i)	Momentum = mass x velocity	Allow abbreviations and rearrangements e.g. p=mv, mass = <u>momentum</u> velocity	1
		(ii)	Substitution into correct equation; Calculation; e.g. 17 000 x 13 220 000 (kg m/s)	Allow 221 000	2

(ii) Calculate the total momentum of the lorry and its load.

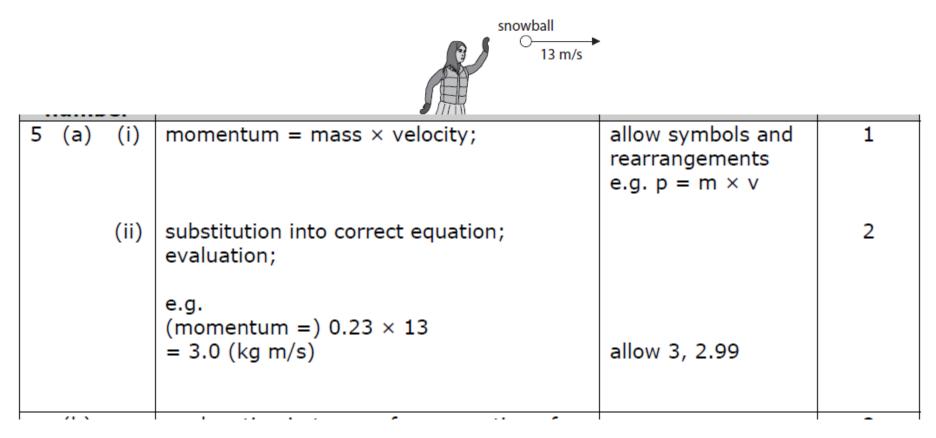
(2)

momentum = kg m/s

(b) A car travels at 20 m/s.

The mass of the car is 1500 kg.

(i) State the equation linking momentum, mass and velocity.


(c) In a crash test, a car runs into a wall and stops.

(2)

... N

			(1)	- 70 CB	5
	(b)	(i)	Momentum = mass x velocity;	Allow equivalent rearrangement or symbols	1
(i				p= m x v	
		(ii)	Substitution into correct equation;		2
			Calculation; e.g.		
			1500 x 20		
			30 000 (kg m/s)	Allow 3×10^4	
				Full marks for correct answer without working (bald answer)	
	Iumi				
	 (c)	(i)		No mark for the equation as it is given on page	e 2
			Substitution into correct equation;	2	
			Calculation; e.g. <u>22500</u>		
			0.14		
			160 000 (N)	Accept 2 or more sf, e.g. 161 000, 160 714 Full marks for bald correct answer	

5 An ice skater throws a 0.23 kg snowball with a velocity of 13 m/s.

initial momentum = kg m/s

11 An underground train enters a station.

			di stati		
11	(a)	(i)	kinetic energy = $\frac{1}{2} \times \text{mass} \times \text{velocity}^2$	Accept symbols KE = $\frac{1}{2} \times m \times v^2$	1
		(ii)	Conversion of units; Substitution and rearrangement into correct formula; Calculation; e.g. 18 MJ = 18 000 000 J $v^2 = 18 000 000 \times 2 \div 250 000 (=$ 144) v = 12 (m/s)	at any stage POT error max 2 marks e.g. 3.8 x 10 ⁿ or 1.2 x 10 ⁿ	3
		(iii)	Energy is transferred to surroundings;	Allow to heat, sound, other forms / energy decreases	1

6 The photograph shows a hammer just before it hits a nail.

momentum = mass x velocity;	words or correct symbols p = m x v reject M for momentum	1
substitution; evaluation; e.g. (p =) 0.50 x 3.1 (p =) 1.6 (kg m/s)	ignore - signs allow 1.55 1 mark max for 1.5	2
<pre>substitution into correct equation; evaluation; e.g. F = 1.55(- 0) ÷ 0.070 (F =) 22 (N)</pre>	no mark for equation as given in paper allow ECF from (ii) ignore - signs allow F in range 22- 23 (N) inclusive allow method using F=ma.	2
	substitution; evaluation; e.g. $(p =) 0.50 \times 3.1$ (p =) 1.6 (kg m/s) substitution into correct equation; evaluation; e.g. F = 1.55(- 0) ÷ 0.070	substitution; evaluation; e.g. $(p =) 0.50 \times 3.1$ $(p =) 1.6 (kg m/s)$ symbols $p = m \times v$ reject M for momentumsubstitution into correct equation; e.g. $F = 1.55(-0) \div 0.070$ $(F =) 22 (N)$ allow 1.55 $1 mark max for 1.5$ substitution into correct equation; e.g. $F = 1.55(-0) \div 0.070$ $(F =) 22 (N)$ no mark for equation as given in paper allow ECF from (ii) ignore - signsallow F in range 22- 23 (N) inclusive allow method using $F=ma.$

ADD SAMS

(ii) The card takes 0.040 s to travel through the light gate.

The student calculates that the average speed of the trolley through the light gate is 1.15 m/s.

Question number	Answer		Additional guidance	Mark
7 (a) (ii)	substitution into speed 1.15 = d / 0.04 evaluation (1) d = 0.046m = 4.6 cm	(1)	full marks will be	(2)
	= 4.6 cm	(1)	awarded for correct numerical answer without working	

Question number	Answer	Additional guidance	Mark	cm
7 (a)(iii)	using V ² - u ² = 2ax		(2)	
	$V^2 = 1.15^2$ = 1.3225 (1)			
	$2 \times a \times x = 2 \times 1.2 \times 0.55$ = 1.32 (1)			
		allow 1.3225		

ADD SAMS

Question number	Answer	Additional guidance	Mark
9(b)	$v = \frac{2 \times \prod \times R}{T}$ unit conversion (1) $10^8 \text{ km} = 10^{11} \text{ m}$ substitution (1) $v = \frac{2 \times \prod \times 1.5 \times 10^{11}}{3.2 \times 10^7}$		(3)
	evaluation (1) v= 2.9 x 10 ⁴ (m/s)	Allow values which round to 2.9 x 10 ⁴ full marks will be awarded for correct numerical answer without working	

(b) The table shows some data about the Earth's orbit of the Sun.

- (a) In one lift, he does 5040 J of work against gravity.
 - (i) One lift takes 4 seconds.

Complete the sentence by putting a cross (🗵) in a box next to your answer.

The power used to lift the weight is

- 🖾 A 1260 W
- 🖾 B 2016 W
- C 12600 W
- D 20160 W

(ii) The weight he lifts has a Gravitational Field Strer	Number	Answer	Acceptable answers	Mark
The energy gained by t	1(a)(i)	A 1260 W		
Calculate the height he				(1)

(1)

Question Number	Answer	Acceptable answers	Mark
1(a)(ii)	substitution (1) $5040 = 240 \times 10 \times \text{height}$ transposition (1) height = 5040 240×10	substitution and transposition in either order	
	evaluation (1) 2.1 (m)	give full marks for correct answer, no working	(3)

March 2012

(a

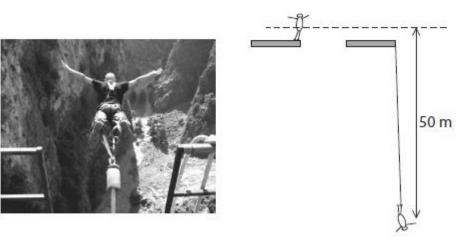
The swing

5 A child is stationary on a swing.

Question Number	Answer	Acceptable answers	Mark
5(a)(i)	substitution (1) work done = 84 x 0.25 evaluation (1) 21(J)	Full marks for correct answer even if no working is evident	(2)

Question Number	Answer	Acceptable answers	Mark
5(a)(ii)	21 J	Ecf from (a)(i)	(1)

Question Number	Answer	Acceptable answers	Mark
5(a)(iii)	substitution (1) $KE = \frac{1}{2} \times 27 \times (2.3)^2$ evaluation (1) = 71.4 (which is approx 71)	V=2.29 gains two marks Reverse argument which shows that V = $\sqrt{5.3}$ gains two marks	(2)


(iii) The first motor has a power rating of 20 W.

The motor is used for 15 c

1	Question Number	Answer	Acceptable answers	Mark
	2(a)(iii)	substitution 20 x 15 (1)	Power of 10 error maximum of 1 mark	
		evaluation 300 (J) (1)	eg 300 000 (J) gains 1 mark	
		If no other mark scored award 1 mark for correct transposition ie E= P x t	Give full marks for correct answer, no working	
		Ignore any unit given by candidate		(2)

Question Number	Answer	Acceptable answers	Mark
2(a)(iv)	substitution 18 ÷ 24 (x 100) (1)	Power of 10 error maximum of 1 mark	
	evaluation 0.75 or 75% (1) Ignore any unit given by candidate	give full marks for correct answer, no working	(2)

2 A 60 kg student weighs 600 N. He does a bungee jump.

E SALTE 2017 CONTRACTOR DE C

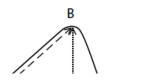
Question Number	Answer	Acceptable answers	Mark
2(c)(i)	Substitution: (1) 60 x 10 x 50 or 600 x 50		
	Evaluation: (1) 30 000	give two marks for correct answer no working	
	Unit: (1) J / Nm	j / joule 30 kJ for full marks	(3)

change in gravitational potential energy = unit

(iii) The child and cart have a total mass of 50 kg. They travel at a velocity of 4 m/s.

Calculate the momentum of the child and cart.

(2)


Question Number	Answer	Acceptable answers	Mark
3 a(iii)	Substitution 50 x 4 (1)		
	Evaluation 200 (kg m/s) (1)	Allow full marks for correct answer with no working shown	(2)

Question Number	Answer		Acceptable answers	Mark
3 a(iv)	Substitution 450 / 1.5	(1)		
	Evaluation 300 (N)	(1)	Allow full marks for correct answer with no working shown Allow (1) for 167 (N) obtained by 450-200 / 1.5	(2)

force =N

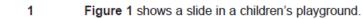
Work, energy and momentum

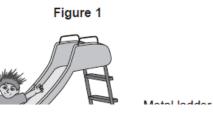
3 The diagram shows a car and passengers at the start of a roller coaster ride at an amusement park.

Question Number	Answer	Acceptable answers	Mark
3(a)	Substitution into $PE = m \times g \times h$: 18 × 9500 × 10 (1) Evaluation:	Allow 1 mark for evaluation of 2 375 000 (arising from using 25m for distance)	(2)
	1 710 000 (J) (1)	1 710 kJ Allow full marks for correct answer with no working shown	

D

Question Number	Answer	Acceptable answers	Mark
3 (b)	1 710 000 J (1)	Allow ecf from 3 a	(1)


(b) The car is released at B and continues down the track.


State the maximum possible kinetic energy of the car and passengers at C.

(iv) One cyclist produces an average power output of 600 W during the race. She completes the race in exactly 4 minutes.

Calculate the work done by the cyclist during the race.

Question Number	Answer	Acceptable answers	Mark
6 a iv	Substitution : (1) 600 = w / 240 Transposition (1) w = 600 x 240	conversion between mins and secs can be delayed until evaluation 600 = w / 4 W = 600 x 4	(3)
	evaluation: (1) 144 000 J	Substitution and transposition can be in either order 144 kJ Allow full marks for correct answer with no working shown 2400 obtained by failure to convert mins to secs can score a maximum of 2 marks	

Question	Answers	Extra information	Mark	AO spec ref
1(a)	450	allow 1 mark for correct substitution, ie 18 × 10 × 2.5 provided no subsequent step	2	AO2 2.2.1f

Decrease in gravitational potential energy = J

3 (b) (i) The cyclist used the brakes to slow down and stop the bicycle.

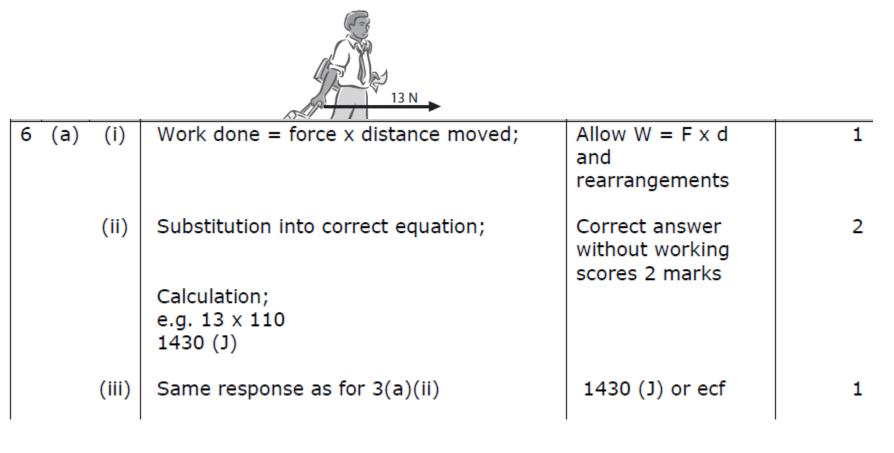
A constant braking force of 140 N stopped the bicycle in a distance of 24 m.

Calculate the work done by the braking force to stop the bicycle. Give the unit.

Question	Answers	Extra information	Mark	AO spec ref
3(b)(i)	3360 joule / J	allow 1 mark for correct substitution, ie 140 × 24 provided no subsequent step accept 3400 for 2 marks if correct substitution is shown do not accept j do not accept Nm	2	AO1 AO2 2.2.1b

- 6 (b) The speed of the rocket just after being launched is 12 m/s. The mass of the rocket is 0.05 kg.
- 6 (b) (i) Calculate the kinetic energy of the rocket just after being launched.

Use the correct equation from the Physics Equations Sheet.


		10			
6(b)(i) mark with 6bii 6biii	3.6	allow 1 mark for correct substitution i.e. $\frac{1}{2} \times 0.05 \times 12^2$ provided no subsequent step	2	AO2 2.2.1g	E
6(b)(ii) mark with 6bi, 6biii	3.6 or their (b)(i)		1	AO1 2.2	E
6(b)(iii) mark with 6bi, 6bii	7.2 or their (b)(ii) ÷ 0.5 correctly calculated	allow 1 mark for correct substitution i.e. 3.6 or their (b)(ii) = 0.05 x 10 x h	2	AO2 2.2.1f	E

Use the correct equation from the Physics Equations Sheet.

[2 marks]

iGCSE January 2015

6 A person has a suitcase with wheels.

iGCSE January 2015

7 The photograph shows a car tyre that needs to be inflated.

Question number	Answer		Notes	Marks
7 (a) (i)	pressure = <u>force</u> area		Allow symbols and rearrangements e.g. p=F/A	1
(ii)	substitute; rearrange; evaluate;		Substitution and rearrangement in either order allow in words	4
	matching unit; e.g. 270 000 = F ÷ 0.016 F = 270 000 x 0.016 4320 N	1 mark 2 marks 3 marks 4 th mark	Allow alternatives with matching unit, e.g. 4.32 3 marks kN 4 th mark	

(4)

8 (a) A student investigates the energy transfers in a small generator.
 She connects the generator to a circuit that includes a lamp.
 She hangs a mass from a string wound around the axle.

The lamp lights as the mass falls to the ground.

generator axle

		Notes	Marks
8 (a) (i)	gravitational potential energy = mass x g x height	Allow symbols and rearrangements, e.g. GPE = m x g x h	1
(ii)	Substitution into correct equation; Calculation; e.g. GPE = 2.75 x 10 x 0.61		2
	= 17 (J)	16.8, 16.775, 16.78 (J) allow calculation with g = 9.81 =16.46 (J)	

(ii) Calculate the gravitational potential energy, GPE, lost by the mass.

(2)

iGCSE January 2015

(c) The mass of ball Y is 45 g.

The golfer gives the ball 36 J of kinetic energy when he hits it.

in the second se

Question number	Answer	Notes	Marks
· · · ·	KE = ½ mv ² ; Conversion to kg; Substitution into correct equation; Rearrangement; Evaluation;	Words or symbols allow • 1000 seen • steps in any order	1 4
	e.g. $45 g = 0.045 kg$ (or 1 kg = 1000 g etc) $36 = \frac{1}{2} \times 0.045 \times v^2$ $v^2 = \frac{2 \times 36}{0.045}$ (= 1600) 0.045 40 (m/s)	 correct answer with no working for full marks up to 3 marks for use of 45 kg →1.26 (m/s)- working must be seen 	

iGCSE January 2014

- 7 A skydiver jumps from an aircraft.
 - (a) The mass of the skydiver is 70 kg.
 - (i) State the equation linking weight, mass and g.

 7
 (a)
 (i)
 Weight = mass x g;
 allow in accepted symbols ignore units, triangle eqns
 1

 (ii)
 700;
 1
 1

 N / newton(s);
 ignore kg m/s²
 1

weight = unit

(1)

iGCSE January 2014

8 A student investigates the efficiency of an electric motor

)uest numb		Answer	Notes	Marks
8	(a)		Substitution into correct equation; Calculation; e.g 1.3 x 10.3 x 4.7; 63 (J);	No credit for merely quoting the equation as <i>E</i> = <i>IVt</i> is given on p2. 62.9 (J)	2
	(b)	(i)	Work done = force x distance moved (in the direction of the force);	Accept rearrangements and symbols e.g. force = <u>work</u> distance W = F x d F=W/d	1
		(ii)	Substitution into correct equation; Calculation; e.g Work done = 20 x 0.85; 17 (J);		2
		(iii)	Value given in 8(b)(ii);	Allow GP(E)	1
	(c)	(i)	Efficiency = useful energy output divided by total energy input;	Accept efficiency in terms of work or power and percentage e.g. Efficiency = (work out / work in) x 100 %	1
		(ii)	17 divided by 63; 0.27;	Allow ecf answer from b(ii) [or (b)(iii)] divided by answer from (a) Allow 27%	2

8 /

8 /	Question number	Answer	Notes	Marks
	8 (a) (i)	work done = force x distance moved ;	Accept W = F x d Allow rearrangements do not accept eqn in units	1
((ii)	Substitution into correct equation; Calculation; 170 x 110 19 000 (J)	only	2
,	(iii)	exactly same as their answer to (ii);	Accept 18 700 (J)	1

(3)

(1)

Question number	Answer	Notes	Marks
8 (b) (i) (ii)	KE = $\frac{1}{2}$ mv ² addition of masses before OR addition of energies after; Substitution into correct equation; Calculation; 1650 + 950 = 2600 (OR 436 425 + 251 275 = 687 700) $\frac{1}{2} \times 2600 \times 23^{2}$ 688 000	Accept word equation Accept for 1 mark - either 436 000 or 251 000 accept for 2 marks - both 436 000 and 251 000 Accept for 3 marks- 687 700	1 3

(c) In 1971, astronaut / '	<i>c</i>		of orbit, time of orbit etc		
	b	Substitution; Evaluation; Unit (to match the value of v); e.g. $V = \frac{(2 \times \pi \times 385000)}{27} = \frac{2 417 800}{27}$	Note value of n used may vary time values and corresponding approximate speeds are 27 days	1 1	ential energy.
		90 000 km/day	allow answers which round to 89 600 Accept suitable matching units	1	
	C İ	E=1/2 mv ² ;	Accept rearranged equation equation in words 	1	ss, g and height.
The golf ball had a	ii	substitution ; Mass converted to kg ; 47.(33) seen;	allow sub of mass as 50 g 1.496 or 1.5 seen gets 2 marks	3	(1)
(i) State the equat	d i	44(J);		1	
	ii	GPE = mgh;	Accept rearranged equation equation using (all the) words 	1	(2)
(ii) Calculate the in			Allow for `g' gravitational field strength but NOT gravity		

				m
111	Substitution and rearrangement; Calculation ; <u>12</u> 0.05x 1.6 150 (m)	POT error loses 1 mark e.g. 0.15 (m) gets 1 mark	2	

gravitational potential energy = mass × g × height	e.g g.l for fie	g. p.e. = mgh r g/gravitati ld strength	onal	1	from P to Q with a constant velocity of 13 m/s.
Substitution into correct equation; Evaluation; e.g. g.p.e. = 0.19 × 10 × 17 = 32 (J)	wł all	nen g = 9.8 ow	ms⁻²)	2	Q ground level
Value same as for (a)(ii)	All	ow "the sar	ne″	1	to the diagram to show the directions of the forces of
	<i>. g</i> and	(b) (i)	Weigh	t shown act	abbreviations for labels e.g W, mg ignore gravity
GPE =		(ii) (iii)	Substit Evaluat e.g. k.e	ution into co tion; e. = $\frac{1}{2} \times 0.2$	e.g. k.e. = ½mv ²
) tł	 g × height Substitution into correct equation; Evaluation; e.g. g.p.e. = 0.19 × 10 × 17 = 32 (J) Value same as for (a)(ii) Value same as for (a)(ii) the equation linking gravitational potential energy (GPE), mass, ate the GPE gained by the squirrel during this climb. 	g × height e.q. g. Substitution into correct equation; Evaluation; e.g. g.p.e. = 0.19 × 10 × 17 = 32 (J) 32 whall 32) Value same as for (a)(ii) All All ate the GPE gained by the squirrel during this climb.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} g \times height & e.g. \\ g.p.e. = mgh \\ for g/gravitational \\ field strength reject \\ 'gravity' \\ \end{array} $	$ \begin{array}{c c} g \times \text{height} & e.g. \\ g.p.e. = mgh \\ for g/gravitational \\ field strength reject \\ 'gravity' \end{array} \\ \begin{array}{c} 2 \\ g.g.p.e. = 0.19 \times 10 \times 17 \\ = 32 (1) \end{array} \\ \begin{array}{c} 32.3 (J) (or 31.6 J \\ when g = 9.8 \text{ ms}^{-2}) \\ allow \\ 32300 \text{ for 1 mark} \end{array} \\ \begin{array}{c} 32.300 \text{ for 1 mark} \\ Allow ``the same'' \end{array} \\ \begin{array}{c} 1 \\ \text{weight shown act} \end{array} \\ \begin{array}{c} \text{weight shown act} \\ \text{weight shown act} \end{array} \\ \begin{array}{c} \text{ate the GPE gained by the squirrel during this climb.} \end{array} \\ \begin{array}{c} \text{(ii)} \\ \text{k.e.} = V_2 \times \text{mass} \end{array} \\ \begin{array}{c} \text{(iii)} \\ \text{k.e.} = V_2 \times \text{mass} \end{array} \\ \end{array}$

5 A man uses a wheelbarrow to carry some logs along a flat path, as shown.

5	5 (a)	(i)	work done = force × distance (moved);	Accept correct symbols e.g. W = F × d W = F × s	1
		(ii)	substitution; evaluation;		2
			e.g. (work =) 140 × 39 5500 (J)	5460	
		(iii)	same answer as 5(a)(ii)	allow `the same'	1

work done =J

(iii) State how much energy is transferred to the wheelbarrow.

(1)

ADD SAMS

Question number	Answer	Additional guidance	Mark
4(a)(iii)	Substitution (1) F = 7.26 x 20.6 Evaluation (1) 150 (N)	Accept 149.6 (N) full marks will be awarded for correct numerical answer without working	(2)

				N
Question number	Answer	Additional guidance	Mark	
4(a)(iv)	Rearrangement (1) $v = a \times t$ Substitution (1) $v = 23 \times 0.48$ Evaluation (1) 11 m/s	Accept 11.04(m/s)	(3)	
		full marks will be awarded for correct numerical answer without working		m/s

Question number	Answer	Additional guidance	Mark
4(b)	Substitution (1) $PE = 7.26 \times 10 \times 1.3$ Evaluation (1) 94.4 (J)		(2)

gravitational potential energy gained = _____ J

ADD SAMS

Answer	Additional guidance	Mark
substitution (1) 371 = (64.5+ m) x 3.5		(4)
rearrangement (1) m+64.5 = 371 / 3.5		
evaluation of total mass (1) m+64.5 = 106 (kg)		
evaluation of woman's mass (1) m = 106-64.5 = 41.5 (kg)		
	full marks will be awarded for correct numerical answer without working	
	substitution (1) $371 = (64.5 + m) \times 3.5$ rearrangement (1) m+64.5 = 371 / 3.5 evaluation of total mass (1) m+64.5 = 106 (kg) evaluation of woman's mass (1) m = 106-64.5	substitution(1) $371 = (64.5+ m) \times 3.5$ rearrangement(1) $m+64.5 = 371 / 3.5$ evaluation of total mass (1) $m+64.5 = 106 (kg)$ evaluation of woman's mass (1) $m = 106-64.5$ $= 41.5 (kg)$ full marks will be awarded for correct

Question number	Answer	Additional guidance	Mark
10(a)(ii)	substitution (1) KE = $\frac{1}{2} \times 64.5 \times 3.5^2$		(2)
	evaluation (1) 395 (J)	allow answers which round to 395 e.g. 395.0625	
		full marks will be awarded for correct numerical answer without working	

J

(b) Some microwaves have a frequency of 1.5×10^{10} Hz. They travel at a speed of 3.0×10^8 m/s.

Calculate their wavelength

Question Number	Answer	Acceptable answers	Mark
3(b)	substitution: (1) $3.0 \times 10^8 = 1.5 \times 10^{10} \times \lambda$ transposition: (1)	Give full marks for correct answer, no working Allow substitution and transposition in either order if clear	
	$\lambda = c/f$ or	Ignore powers of 10 until evaluation	
	$(\lambda =) \frac{3.0 \times 10^8}{1.5 \times 10^{10}}$ evaluation: (1)	e.g. 3/1.5 2 marks λ = f/c (0) then 1.5/3 1 mark bald 1.5/3 0 mark	
	0.02 (m)	2 × 10 ⁻² (m) ignore formula triangle	(3)

(d) The telescope is used to look at the planet Venus. Assume that the distance from Venus to the Earth is 39 000 000 km. The speed of light is 300 000 000 m/s.

Calculate the time it takes for light to travel from Venus to the Earth.

(3)

Question Number	Answer	Acceptable answers	Mark
1(d)	transposition (1) t = x/v	Transposition and substitution may be in either order Transposition may be implied by correct figures	
	substitution (1) t = 39 000 000 000/300 000 000	Ignore powers of ten until final answer 39 000 000 ÷ 300 000 000	
	evaluation (1) 130 (s)	2mins 10sec	
		give full marks for correct answer, no working	
		give 2 marks for a power of 10 error, no working e.g. 0.13 (s)	(3)

	ound waves and ultrasound waves are types	Number	r	nswer		Acceptable answers	Mark
Two elepha	ed by animals to communicate. nts use infrasound waves for long distance e between these two elephants is 2500 m.	3(c)(i)	tr	ransposition (1) = distance ÷ speed		This is a "show that" question, there must be evidence of calculation	
				ubstitution (1) (2 x)2500 ÷ 340		Ignore factor of 2 until final evaluation 2500 ÷ 340 = 2 marks	
1				valuation (1) 4.7 (s)		14.7 is evidence of calculation = 3 marks	
						There are other ways to use the data e.g. 5000 ÷15 = 333 (m/s) (which is	
Question / Number	Answer	Acceptable	ansv	wers	Mark	about 340 m/s) 2500 ÷7.5 = 333 (m/s) (which is	
3(c)(ii) 4	 Any one of the following points idea of a conversation (1) (4000 m is) a longer distance taking a longer time (to reach other elephant) (1) time needed for waves to travel is about 24 s (1) time gap between calls (sufficient) for elephant to hear a reply (1) call lasts long enough to be identified by other elephants (OWTTE) (1) 	(some) tim waiting to s	ne see if	and call takes f there is a (from another	(1)	about 340 m/s) OR 340 x 15 = 5100 (m) (which is about 5000 m) Give marks for transposition, substitution and evaluation clearly shown	(3)

Suggest a reason why elephants wait 30 s before calling again.

(c) Outside our Solar System, the star closest to Earth is called Proxima Centauri. Light from this star takes 2 200 000 minutes to reach the Earth. Light from the Sun takes 8.3 minutes to reach the Earth. The speed of light is 18 000 000 km/minute.

 By calculation, compare the distance of Proxima Centauri from the Earth with the distance of the Sun from the Earth.

Question Number	Answer	Acceptable answers	Mark
4(c)(i)	calculate one distance (1) e.g. 1.49×10^8 or 3.96×10^{13} evaluation (1)	accept 149 400 000 or 39 600 000 000 000	
	e.g. $(3.96 \times 10^{13} \div 1.49 \times 10^{8})$ = 265 000	265 060 265 771.18	
	e.g. inverse (1.49 x 10 ⁸ ÷ 3.96 x 10 ¹³) 3.77 x 10 ⁻⁶		
	e.g. from comparison of times (2 200 000 ÷ 8.3) = 265 000	Give 2 marks for a correct evaluation with no working shown or no distance calculation	
		Give 2 marks for two correct distances and a correct comparative statement	(2)

(2)

 (iii) The average speed of a P-wave in the mantle is 12 km/s. A P-wave travels vertically down from the surface and reflects from the core-mantle boundary back to the surface. It travels a total distance of 5800 km.

Question Number	Answer	Acceptable answers	Mark
2(b)(iii)	substitution (1) 12 = 5800 ÷ t transposition (1) t = 5800 ÷ 12	Substitution and transposition can be in either order	
	evaluation (1) 480 (s)	8 minutes A value which correctly rounds to 480	
		give full marks for correct answer, no working	(3)

Calculate the total time of travel for the wave

(b) The velocity of the waves in deep water is 25 m/s. The wavelength is 120 m.

Calculate the frequency of the waves.

(3)

Question Number	Answer	Acceptable answers	Mark
3(d)	substitution (1) 800 x 0.4 / 800 x 40	4800 / 0.4 = 12000 Kwh (to be sold)	
	evaluation of payment (1) (£)320 / 32000 (p)	takes 12000 / 800 years	
		substitution and transposition can be in either order	
	evaluation of payback time (1) 15 (years)	allow power of 10 error in 15 for (2)	
		give full marks for correct answer, no working	(3)

(d) An X-ray of wavelength 2.0 nm has a frequency of 1.5×10^{17} Hz.

 $1.0 \text{ nm} = 1.0 \times 10^{-9} \text{ m}$

Calculate the speed of the wave.

(2)

Question Number	Answer	Acceptable answers	Mark
1(d)	substitution ie ($v =$) 1.5 x 10 ¹⁷ x 2 x 10 ⁻⁹ (1) evaluation	[Remember that equations, including $v = f\lambda$ are given on page 2. Please do not credit]	
	ie ($v =$) 3 x 10 ⁸ m/s (1)	Give full marks for correct answer, no working 3 x any other power of 10 =1 mark	(2)

speed = m/s

(c) Light travels the 150 million km from the Sun to the Earth in about 500 s. It takes about 2100 s for light to reach the Earth from Jupiter. Using this information, calculate the approximate distance of Jupiter from the

3(c) Power of 10 error maximum of 1 mark $2100/500 = 4.2$ (1) $4.2 \times 150 = 630$ (million km) (speed of light) about 150 000 000 $\div 500 = 300 000$ (km/s) (1) Accept ratios as speed is constant (distance to Jupiter)= 300 000 x 2 100 $150/500 = distance toJupiter/2100 (1) = 630 000 000$	Question Number	Answer	Acceptable answers	Mark
OR Distance to Jupiter = (150/500) x 2100 Either for 1 mark An answer with no calculation of 630 (million km) gains 2 marks If an answer of 630 million/ 630 000 000 is given with correct working award both marks (2)		 4.2 x 150 = 630 (million km) (1) Accept ratios as speed is constant 150/500 = distance to Jupiter/2100 OR Distance to Jupiter = (150/500) x 2100 	mark (speed of light) about 150 000 000 \div 500 = 300 000 (km/s) (1) (distance to Jupiter)= 300 000 x 2 100 = 630 000 000 <u>km</u> (1) / = 630 (million km) An answer with no calculation of 630 (million km) gains 2 marks If an answer of 630 million/ 630 000 000 is given with correct	(2)

Question Number	Answer	Acceptable answers	Mark
5(b)	transposition $\lambda = v/f$ (1) substitution	Subst. and transform. either order 1 mark only can be scored for correct substitution after incorrect transposition.	
	$\lambda = 3 \times 10^8 / 7 \times 10^9 $ (1)	3 x 10 ⁸ /7 x10 ⁹ gains 2 marks	
	evaluation 0.043 (m) (1)	Accept any number of sig.figs. that rounds to 0.04	
	Ignore any unit given by candidate	0.04 , 0.0428 (m) (1) Give full marks for correct answer with no working.	(3)
		0.04 x any other power of 10 = 2 marks	

March 2013

- (b) The earthquake causes seismic waves.
 - (i) S waves are one type of seismic wave. They travel at 0.65 km/s. There is a seismometer 80 km away from point E. Show that it takes about 2 minutes for the S waves from the earthquake to reach the seismometer.

Question Number	Answer	Acceptable answers	Mark
4(bi)	substitution (1) 0.65 = 80 / t transposition (1) t = 80 / 0.65 (123 seconds)	transposition and substitution can be in either order . Allow reverse calculations eg speed = 80/120 (1) = 0.67 (about 0.65) (1) or distance = 0.65 x 120 (1) = 78 km (about 80) (1).	(2)

(2)

(c) The telescope collects light reflected from Jupiter. The light has a frequency of 4.30×10^{14} Hz and a speed of 3.00×10^8 m/s. Calculate the wavelength of the light.

(3)

Question Number	Answer	Acceptable answers	Mark
5(c)	Substitution (1)		
	$3.0 \times 10^8 = 4.3 \times 10^{14} \times \lambda$	Substitution and transposition in either order	
	Transposition (1)	Ignore triangle	
	$(\lambda =) \qquad \frac{3.0 \times 10^8}{4.3 \times 10^{14}}$		
	Evaluation (1)	correct answer no working = 3 power of ten error = 2	
	6.98 x 10 ⁻⁷ (m)	to at least 2sf (eg 7.0/6.97)x10 ⁻⁷	
		Ignore powers of 10 until evaluation	(3)

(b) The velocity of light in a vacuum is 300 000 000 m/s (3 \times 10 8 m/s).

Question Number	Answer	Acceptable answers	Mark
4b	transposition (1) (f =) v/λ OR c/ \Box	allow substitution and transposition in either order	
	substitution (1) 3 x 10 ⁸ / 800 x 10 ⁻⁹	3×10^8 / 800 shows transposition 3×10^8 / 800 x 10 ⁻⁹ scores for transposition and substitution $3 \times 10^8 = f \times 800 \times 10^{-9}$ just scores substitution mark	
	evaluation (1) 3.75 x 10 ¹⁴	ignore power of 10 errors until evaluation mark award full marks for correct answer with no working POT error gives 2 calculation marks, but check for unit e.g. kHz/GHz etc	4
	hertz / Hz (1)	condone Hertz OR s ⁻¹ ignore hz or c.p.s accept correct SI prefix eg kHz, MHz, GHz, THz etc	

AQA June 2014

4 A note was played on an electric keyboard.

The frequency of the note was 440 Hz.

4 (a) (i) What does a frequency of 440 Hz mean?

[1 mark]

Question	Answers	Extra information	Mark	AO spec ref
4(a)(i)	440 (sound) waves produced in one second	accept vibrations / oscillations for waves	1	AO1 1.5.1i
4(a)(ii)	0.773 (metres)	allow 2 marks for an answer that rounds to 0.773 allow 2 marks for an answer of 0.772 allow 2 marks for an answer of 0.772 allow 1 mark for correct substitution ie $340 = 440 \times \lambda$	3	AO2 1.5.1j

Wavelength = metres

(b) The foghorn emits sound waves with a frequency of 160 Hz.

```
The speed of sound is 340 m/s.
(b) (i) (wave) speed = frequency ×
                                                       allow abbreviation,
                                                                                    1
          wavelength
                                                       e.g.
                                                       v = f \times \lambda or
                                                       rearrangements
     (ii)
          substitution into correctly rearranged
                                                                                   2
          equation;
          evaluation;
          e.g.
          (v =) 340 / 160
          (v =) 2.1 (m)
                                                       allow 2.125, 2.12,
                                                       2.13
                                                       or 2 (if supported)
                                           wavelength =
                                                                    m
```

6 Echo sounding is used to detect fish in the sea.

Sound waves are emitted from a fishing boat. Some of the sound waves are reflected by fish and detected back at the boat.

(a) The shortest time between the sound waves being emitted and detected is 0.26 s

6	(a)	MP1. Substitution into correct equation;		4
		MP2. Rearrangement;		
		MP3. Divide by 2;		
		MP4. Conversion between km and m;	Accept x 1000 at any point in calculation	
		e.g.		
		1.5 x 1000 = 1500		
		Speed = <u>distance</u> 0.26		
		Distance = $1500 \times 0.26 = 390 \text{ (m)}$	0.39 gets 2 marks	
		So distance to fish = 195 m	390 gets 3 marks	

distance = m

(c) Visible light from Mars reaches the Earth.

Question number	ADGWOP NOTOG		Marks
6 (c) (i)	Working;; e.g.	'show that' question, working must be shown for full marks	3
	300 000 = <u>170 000 000</u> 1 working mark (sub ONLY) t	REVERSE CALCS: maximum mark =2 (correct calc plus a comparison	
	t = <u>170 000 000</u> both working marks (sub AND rearrange) 300 000 Calculation;	statement e.g. 283 333 = 300 000 180 000 000 = 170 000 000)	
	e.g. = 570 (566.7) (s) 1 mark (ans to > 1 SF)	Allow (without the subject of the equation) for 2 marks, <u>170 000</u> 000 300	

(c) A radio station broadcasts at a frequency of 200 kHz.

The wavelength of the radio waves is 1500 m.

(i) State the equation linking wave speed, frequency and wavelength.

		1		T 14 -
с	i 	(wave) speed = frequency x wavelength	Accept equivalent Accept recognised symbols	
	ii	Substitution into correct equation; Evaluation;	mark unit and calc independently	3
		Unit;	Power Of Ten error = -1	
		Eg. (wave) speed = 200 000 x 1500 300 000 000	e.g. not converting kHz to Hz	
		m/s	Accept	
			 bald answer 	
			answer in SF	
			 alternative speed units with corresponding evaluation e.g. 300 000 km/s 1.08 x 10¹² km/hour 	
		1		-

speed =	unit
---------	------

191

(c) (i) State the equation linking wave speed, frequency and wavelength.

(1)

13 cont	(c)	(i)	wave speed = frequency × wavelength	Allow abbreviations and rearrangements, e.g. v=fλ	1
		(ii)	Conversion to Hz; Substitution into correct equation and rearrangement; Evaluation; e.g. 31 MHz = 31 000 000 Hz wavelength = 300 000 000 ÷ 31 000 000 9.7 m	Allow 10 ⁶ seen at any stage allow answers which round to 9.7 (9.6774)	3
			wavelengt	h = m	

ADD SAMS

(d) A sound wave travels with a velocity of 1530 m/s.

Question number	Answer	Acceptable	Mark
8(d)	substitution (1) 1530 = (1.2/1000) x wavelength rearrangement (1) wavelength = 1530 / (1.2/1000) evaluation (1) = 1.275 (m)	2 marks for 1275m (incorrect conversion into Hz) full marks will be awarded for correct numerical answer without working	(3)

wavelength = m

November 2011

(b) A transfor	Question Number	Answer	Acceptable answers	Mark
It has 200	6(b)(i)	substitution: (1)	Allow substitution and transposition in either order if clear	
The input (i) Show		$\frac{55}{V} = \frac{200}{3000}$		
		transposition: (1)	$\frac{55}{825} = \frac{200}{3000}$ scores 3	
(ii) Calculat		$V = \frac{3000}{200} \times 55$	$\frac{55}{800} = \frac{200}{3000}$ scores 1	
coil is 0.		evaluation / comment: (1)	Correct comparison of ratios scores 3	
		825(V) / which is about 800 (V)	(15 and 14.5, 0.067 and 0.069)	(3)

Question Number	Answer	Acceptable answers	Mark
6(b)(ii)	 power input = power output (1) 	power input = 55×0.5 (W) power input = 27.5 (W)	
	• I = 0.033 (A) (1)	I = 0.034 (A)	
		Give full marks for correct answer no working	(2)

5 A windfarm generates electrical power from the wind.

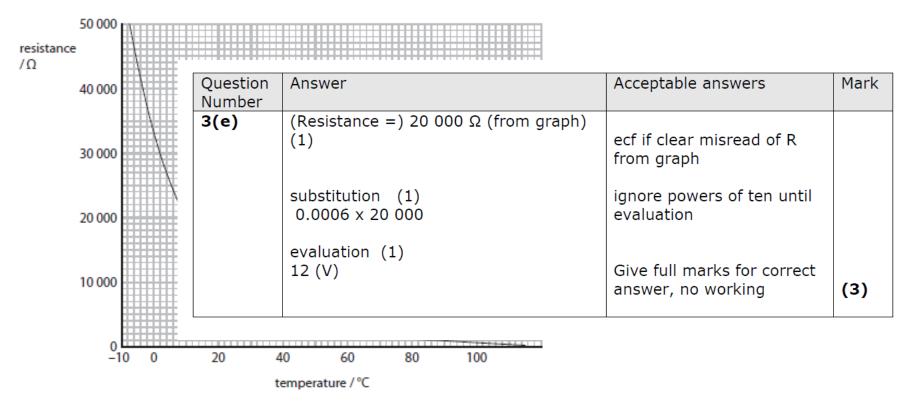
(a) State one disadvantage of using the wind to generate electrical power.

(1)

	Question Number	Answer	Acceptable answers	Mark
(b) A windfarm generates 322 MW of electrical pov The windfarm is connected to a transmission lir of 132 kV.	5(b)(i)		Transposition and substitution may be in either order Transposition may be implied by correct figures	
(i) Calculate the current from the windfarm.		transposition (1) current = power ÷ voltage substitution (1) 322 000 000 ÷ 132 000 evaluation (1) 2440 (A)	I = P \div V Ignore powers of ten until final answer i.e. give 2 marks for 322 \div 132 2439 (A) 2439.39(A) 2.44 <u>k</u> A give full marks for correct answer, no working give 2 marks for a power of 10	
(ii) The windfarm produces 322 MW of power. The windfarm is to be extended by adding. The extended windfarm will then produce a			error, no working e.g. 2.44 (A)	(3)

Calculate the power produced by each imp

Question Number	Answer	Acceptable answers	Mark
5(b)(ii)	 calculation to find additional power generated e.g. 539 - 322 = 217 (MW) (1) 2.9 (MW) (1) 	217 without working 2.893 (MW)	
bower	=	give full marks for correct answer, no working	(2)


(b) This label is attached to the heater.

230 V 500 W 50 Hz

Use this information to calculate the expected current in the heater.

(3)

Question Number	Answer	Acceptable answers	Mark
3(b)	substitution (1) $500 = I \times 230$	substitution and transposition in either order	
	transposition (1) 500/230		
	evaluation (1) 2.2 (A)		
		2.17 (A) / 2 (A)	
		give full marks for correct answer, no working	(3)

When the temperature is 10 °C, the current in the thermistor is 0.60 mA.

Calculate the potential difference across the thermistor at 10 °C.

(3)

March 2012

(b) The students use the electric motor to lift a weight. The current in the motor is 0.5 A. The potential difference (voltage) across the motor is 6 V.

Calculate the input power to the motor. State the unit.

(3)

Question Number	Answer	Acceptable answers	Mark
1(b)	substitution (1) 0.5×6.0		
	evaluation (1) 3	give (2) for correct answer, no working	
	unit (1) W / watts	0.003 kW (3) 3 kW (2)	
		J/s, VA Accept kW for unit with incorrect or no numerical answer	<mark>(</mark> 3)

input power = unit =

(d) A homeowner fits a solar panel to her roof.

The cost of the solar panel is £4800.

The solar panel supplies an average of 800 kW h of electrical energy to the National Grid each year.

The homeowner is paid 40p for each kW h of energy supplied to the National Grid.

Calculate the payback time for the solar panels by selling energy to the National Grid.

Question Number	Answer	Acceptable answers	Mark
3(d)	substitution (1) 800 x 0.4 / 800 x 40	4800 / 0.4 = 12000 Kwh (to be sold)	
	evaluation of payment (1) (£)320 / 32000 (p)	takes 12000 / 800 years substitution and transposition	
	evaluation of payback time (1)	can be in either order	
	15 (years)	allow power of 10 error in 15 for (2)	
		give full marks for correct answer, no working	(3)

(3)

S

March 2012

(ii) A large solar farm has 21 700 solar panels and generates 5.0 MW of power.

 $1.0 \text{ MW} = 1.0 \times 10^6 \text{ W}$

Calculate the average power each panel produces.

(2)

Question Number	Answer	Acceptable answers	Mark
2(b)(ii)	substitution (1)		
	5 000 000 / 21 700	Ignore powers of 10 until evaluation	
	evaluation (1)		
	230 W		
		230.4 W	
		Give full marks for correct answer, no working	(2)
		2.3 x any other power of $10 = 1$ mark	

average power produced by each panel =W

(iii) The solar farm receives 25 MW of power from the Sun to generate 5 MW of electrical power.

Calculate the efficiency of the solar farm.

Question Mark Answer Acceptable answers Number 2(b)(iii) substitution (1) 5 x 100 / 25 evaluation (1) 20(%) 0.2, 1/5 Give full marks for correct answer, no working $2 \times any$ other power of 10 = 1(2) mark e.g. 200, 1/500

(2)

March 2012

4 A small notebook computer has a power rating of 40 W.

Question Number	Answer	Acceptable answers	Mark
4(a)(i)	С		(1)

Put a cross (🖾) in the box next to your answer.

Question Number	Answer	Acceptable answers	Mark
4(b)	substitution (1) 2400/200 = 230/ V_s		
	transposition (1) ($V_s =$) 230 x 200/2400	substitution and transposition in either order 230/12 = 2 marks (s&t) 200/10.43 = 2 marks (s&t)	
	Evaluation (1) $(V_s =)$ 19 (V)	19.2 (V) 19.17 (V) Give full marks for correct answer, no working 1.9 x any other power of 10 = 2	(3)

(3)

secondary voltage = V

March 2012

(ii) One of the components being investigated is a 12 ohm resistor. When it is in the circuit, the ammeter reading is 0.50 A.

Calculate the voltmeter reading.

(2)

Question Number	Answer	Acceptable answers	Mark
1(a)(ii)	substitution (1) $V = 0.5 \times 12$ evaluation (1) V = 6 (V)	Correct answer with no working shown gains two marks.	(2)

(b) During the lightning flash a total charge of 52 C flows. The average current is 2600 A.

Calculate the duration of the flash in seconds.

(3)

Question Number	Answer	Acceptable answers	Mark
4 (b)	substitution (1) $52 = 2600 \times \text{time}$ transposition time = $52 / 2600$	T = Q / I	
	(1) evaluation 0.02 (s) (1)	Full marks for correct answer even if no working is evident	(3)

(c) A LED lamp has a power rating of 3 W. The voltage across the lamp is 12 V. Calculate the current in the lamp.

(3)

Question Number	Answer	Acceptable answers	Mark
6(c)	substitute (1) $3 = I \times 12$ transformation (1) $I = 3 \div 12$	Subst. and transform. either order 1 mark only can be scored for correct substitution after incorrect transposition.	
	evaluation (1) 0.25 (A)	Accept any number of sig. figs. that rounds to 0.25 (A) 250 <u>m</u> A gains 3 marks	
	Ignore any unit given by candidate	give full marks for correct answer, no working 2.5 x any other power of ten = 2 marks eg 25 (A) gains 2 marks	(3)

(iii) The supply voltage is 12 V. At 20 °C the current is 0.047 A.

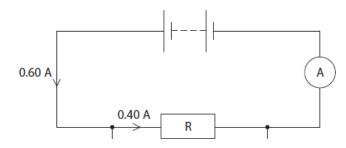
Calculate the resistance of the thermistor at this temperature.

(3)

Question Number	Answer	Acceptable answers	Mark
3 (a) (iii)	Substitution: (1)		
	12 = 0.047 x R	transposition and substitution in either order	
	Transposition: (1)	substitution mark can be scored	
	R = 12/0.047	when incorrectly transposed word/symbol equation is given	
	Evaluation: (1)		
	R = 260	255.3, 255 give full marks for correct answer no working power of 10 errors with no working score max 1 mark	(3)

March 2013

(b) The current in a wire is 3.7 A.


Calculate the charge that flows into the wire in 13 s.

(2)

Question Number	Answer		Acceptable answers	Mark
1(b)	substitution (1) 3.7 x 13 evaluation 48 (C)	(1)	48.1 Correct answer with no calculation scores 2 marks	(2)

March 2013

5 (a) The diagram shows an electric circuit with two resistors, R and S.

Question Number	Answer	Acceptable answers	Mark
5(a)(i)	11x 0.4 (substitution) (1) 4.4 (V) (1)	Full marks for correct answer with no calculation	(2)

	Question Number	Answer	Acceptable answers	Mark
	5(a)(ii)	0.6 - 0.4 (A) (1)	0.2 or 1/5 (A)	(1)
(ii) Use in				

1.11

current = A

(c) A transformer has 2400 turns on the primary coil and 100 turns on the secondary coil.

Question Number	Answer		Acceptable answers	Mark
2(c)	Transposition	(1)		
	$V_s = V_p x n_s/n_p$		Substitution and transposition in either order	
	Substitution	(1)		
	$(V_s =) \frac{12 \times 100}{2400}$		i.e. if 12×100 is seen this scores 2 2400	
			If they sub Vp, Np and Ns correctly, ignore anything for Vs even a blank	
	Evaluation	(1)	Calculation may be done using turns ratio	
	0.5 (V)		Correct answer no working = full marks answer (no working) with POT error =2 (eg 5 or 0.05)	
			Ignore powers of 10 until evaluation	(3)

(b) The power of the kettl The mains voltage is 2	Question Number	Answer	Acceptable answers	Mark
The mains voltage is 2	2(b)(i)	Substitution (1)		
(i) Calculate the curre		1800 = 230 × I		
		Transformation (1)	current = power / pd	
		I = 1800 / 230	Any value which rounds to 7.9	
		Evaluation (1)	Any value which rounds to 7.8 such as 7.8261	
		7.8 (A)		
		substitution and transposition can be in either order		
(ii) The kettle is switch			Allow full marks for correct	
Calculate the total			answer with no working shown	(3)

Question Number	Answer	Acceptable answers	Mark
2(b)(ii)	Using E = I \times V \times T: Substitution (1) 7.8 \times 230 \times 2 (\times 60)	Allow ecf from 2(b)(i) Using energy = power x time 1800 x 2 (x 60) (1)	
	Evaluation(1) 220 000 (J)	Values which round to 220 000 such as 216 000 (J) 215 280 (J)	
	(note: incorrect conversion of time loses the evaluation mark)	Allow correct conversion to MJ or kJ Allow full marks for correct answer with no working shown	
			(2)

Power

3 The photograph shows a laptop computer plugged into the 230 V mains.

plug in 230 V mains

	Question Number	Answer	Acceptable answers	Mark
	3(a)	conversion (1) 3.2 W = 0.0032 kW	allow conversion and substitution in either order	
(b) W		substitution (1) 0.0032 × 24 × 14	correct substitution of any power x time x cost (per unit)	
c		evaluation (1) 1.1 (p)	answers rounding up from 1.0752 to 1.1 =3 marks	
			condone rounding to 1 (p) for 3 marks if some correct working shown	
			any other answer using 10752 (to any {power of 10 / sig.fig.}) = 2 marks	(3)
			award full marks for the correct answer with no working	

(c) The transformer shown in the photograph steps down the mains voltage of 230 V to 9.2 V.

The primary coil of the transformer has 4700 turns.

(i)	Question Number	Answer	Acceptable answers	Mark
	3(b)	substitution (1) $97 = 230 \times I$ transposition (1) <u>power OR 97</u> voltage 230	allow substitution and transposition in either order ignore power of 10 errors until evaluation mark	
		evaluation (1) 0.42 (A)	allow numbers which round down to 0.42 (A) e.g. 0.42/0.42174 (A) for 3 marks award full marks for correct answer with no working unsupported 4.2 (A) OR 0.042 (A) score 2 condone rounding to 0.4 (A) condone use of 240 instead of 230 to give 0.402 so accept for 3	(3)

(c) An electric torch is switched on for 90 s.

The current in the torch is 70 mA.

Calculate the amount of charge flowing from the torch battery during this time.

(2)

Question Number	Answer		Acceptable answers	Mark	
1 (c)	Substitution 70 (\times 10 ⁻³) \times 90	(1)	allow 1 mark maximum for power of ten error in final answer (C)	(2)	
	Evaluation: 6.3 (C)	(1)	Allow 2 marks for correct answer with no working shown.		C

Electrical resistance

5 A student uses this circuit to investigate how the current in a filament lamp varies with the potential difference (voltage) across the lamp.

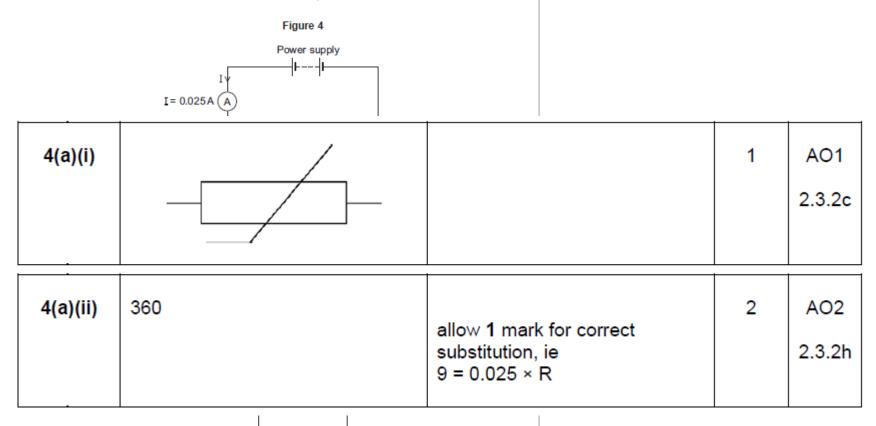
Question Number	Answer	Acceptable answers	Mark
5(b)	A (12 joules per coulomb)		(1)

	Question Number	Answer	Acceptable answers	Mark
	5(c)	Substitution: (using R=V/I)	Substitution: (using $V = IR$)	(2)
		4.0 / 0.37 (1)	0.37 × 11 (1)	
(a)		Evaluation:	Evaluation:	
	di	10.8 (Ω) (1)	4.07 (V) (1)	
		(Approx 11)	(approx 4)	
(b)	C	Accept answer of 10.8 with no	Accept answer of 4.07 with no	
	п	Accept answer of 10.8 with no working for both marks	Accept answer of 4.07 with no working for both marks	
X	A		Or	
\times	В		Substitution: (using $I = V/R$) 4/11 (1)	
×	c		Evaluation:	
\times	D		0.364 (A) (1)	
(c)	N		(approx. 0.37)	
	ar		Accept answer of 0.364 with no	
	Sł		working for both marks	

1 (b) (i) A single wind turbine has a maximum power output of 2 000 000 W.

The wind turbine operated continuously at maximum power for 6 hours.

Calculate the energy output in kilowatt-hours of the wind turbine.

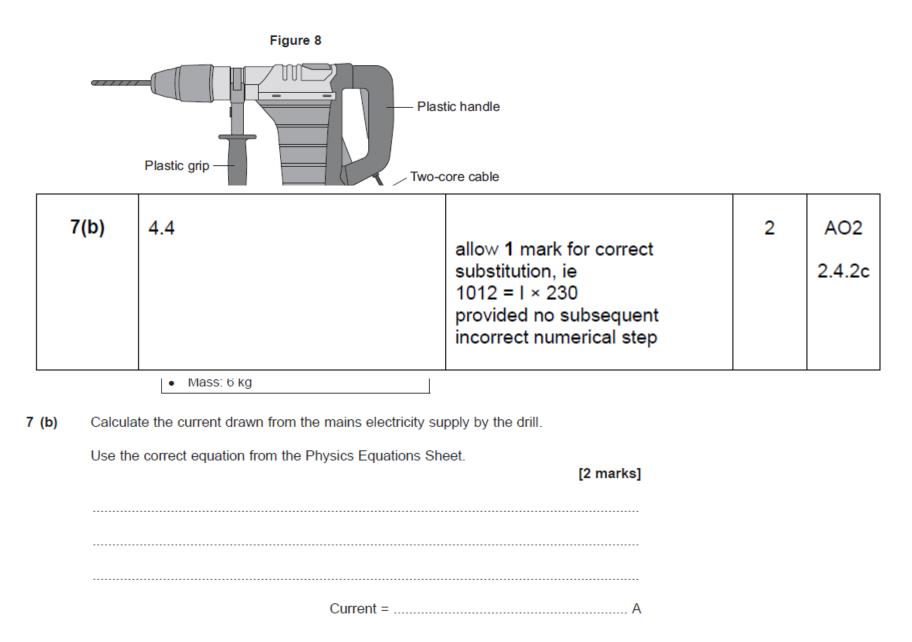

Use the correct equation from the Physics Equations Sheet.

			12 marks	I
1(b)(i)	12 000 (kWh)	allow 1 mark for correct substitution eg 2000 × 6 or 2 000 000 × 6 or $\frac{12 000 000}{1000}$ an answer of 12 000 000 scores 1 mark	2	AO2 1.3.1c

[2 marka]

AQA June 2014

4 (a) Figure 4 shows the apparatus used to obtain the data needed to calculate the resistance of a thermistor at different temperatures.


4 (a) (ii) Use the data given in Figure 4 to calculate the resistance of the thermistor at 20 °C.

Use the correct equation from the Physics Equations Sheet.

[2 marks]			
Resistance =ohms			

AQA June 2014

7 Figure 8 shows an electric drill.

5 (b) (ii) The solar storage power station can store a maximum of 2 200 000 kWh of energy. The solar storage power station can supply a town with a maximum electrical power of 140 000 kW.

> Calculate for how many hours the energy stored by the solar storage power station can supply the town with electrical power.

5(b)(ii)	16 (hours)	an answer that rounds to 16 gains 2 marks eg 15.71	3	AO2 AO1 P1.3.1c
		allow 1 mark for a correct substitution ie 2 200 000 = 140 000 x t		

.....

.....

Time = hours

AQA June 2015

Figure 6 1.7 Ε 5(a)(i) 1 AO2 2.3.2 mark with 5aii 5aiii 51 2 AO1/AO2 Ε 5(a)(ii) mark allow 1 mark for correct 2.3.2a or with 5ai 30 x their (a)(i) correctly substitution i.e. 1.7 = Qcalculated 5aiii 30 or their (a)(i) = $\frac{Q}{30}$ coulomb / C do not accept c 1 Current = A 5 (a) (ii) The bulb works at normal brightness for 30 seconds before it is switched off. Calculate the charge that flows through the bulb in the 30 seconds before it is switched off. Give the unit. Use the correct equation from the Physics Equations Sheet. [3 marks]

Charge = unit

5 (a) (iii) Calculate the energy transferred by the 12 V bulb when it is working at normal brightness for 30 seconds.

Use the correct equation from the Physics Equations Sheet.

				12 marks1	
5(a)(iii) mark with 5ai 5aii	612 or their(a)(ii)x 12 correctly calculated or their (a)(i) x 360 correctly calculated	allow 1 mark for correct substitution i.e. E = 12 x 51 or 12 x their (a)(ii) or their (a)(i) x 360	2	AO2 2.4.2d	E

8 (b) When the toothbrush is being charged, the p.d. across the primary coil in the charging base is 230 V.

The charging p.d. across the secondary coil in the toothbrush is 7.2 V.

8(b)	18	allow 1 mark for correct substitution, ie $\frac{230}{7.2} = \frac{575}{n_s}$	2	AO2 P3.3.2g		
	Number of turns on the secondary coil =					

iGCSE January 2016

8	An electric vehicle		Ques num		Answer	Notes	Marks
	The battery is rech	8	(a)	(i)	385 (J);		1
				(ii)	substitution into E=QV; evaluation to at least 2 s.f.;	reverse calculation e.g. calculating a voltage or charge gains 1 mark max.	2
						if no other mark given allow 1 mark for 10 ⁶ or 1000000 seen in working	
					e.g. (E =) 385 × 180 000 (E =) 69 000 000 (J) / 69 (MJ)	allow ecf from 8(a)(i) value	
	(a) The battery vol			(iii)	MP1. idea of <u>energy</u> wasted; MP2. appropriate mechanism;	allow not 100% efficient, <u>energy</u> lost e.g. heat in wires	2
	(i) State the ai through a p	8	(b)	(i)	charge = current × time;	allow abbreviations e.g. $Q = I \times t$ or rearrangements	1
				(ii)	substitution; rearrangement; evaluation;	ignore not converting time to seconds until evaluation	3
	(ii) Show that, amount of				e.g. 180 000 = current × (110 × 60) (current =) 180 000 / (110 × 60)	allow 27.3, 27.27	
					(current =) 27 (A)	1600, 1640, 1636 etc. gain 2 marks	
						if no other mark given allow 1 mark for 60 seen anywhere in working (attempt to convert to seconds)	

iGCSE January 2016

8	(b)	(i)	charge = current × time;	allow abbreviations e.g. $Q = I \times t$ or rearrangements	1
		(ii)	substitution; rearrangement; evaluation;	ignore not converting time to seconds until evaluation	3
			e.g. 180 000 = current x (110 x 60) (current =) 180 000 / (110 × 60) (current =) 27 (A)	allow 27.3, 27.27	
				1600, 1640, 1636 etc. gain 2 marks	
				if no other mark given allow 1 mark for 60 seen anywhere in working (attempt to convert to seconds)	

(d) (i) State the equation linking voltage, current and resistance.

Question Notes Marks Answer number Accept rearrangements and symbols e.g. current = voltage ÷ resistance, V=IR, 4 (d) (i) voltage = current x resistance; 1 R = V/I(ii) Substitution into correctly rearranged equation; 3 Conversion between amps and milliamps; Calculation yielding value correct to at least 2 s.f.; Accept x 1000 in calculation e.g. $I = 5.9 \div 680$ = 0.00868 (A)= 8.7 (mA)Allow 1 mark max if response is only a successful reverse argument leading to 5.8 V or 5.78 V

Total 14 marks

(1)

3	(a)	(i)	power = voltage x current;	Accept rearrangements and symbols	1
				e.g. current = power ÷ voltage, P=IV, I=P/V	
				ignore	
				a triangle mnemonic	
				an eqn in units	
		(ii)	2.9 (A);	Accept 2.92 (A), 2.916 (A)	1

(a) (i) State the equation linking power, current and voltage.

(1)

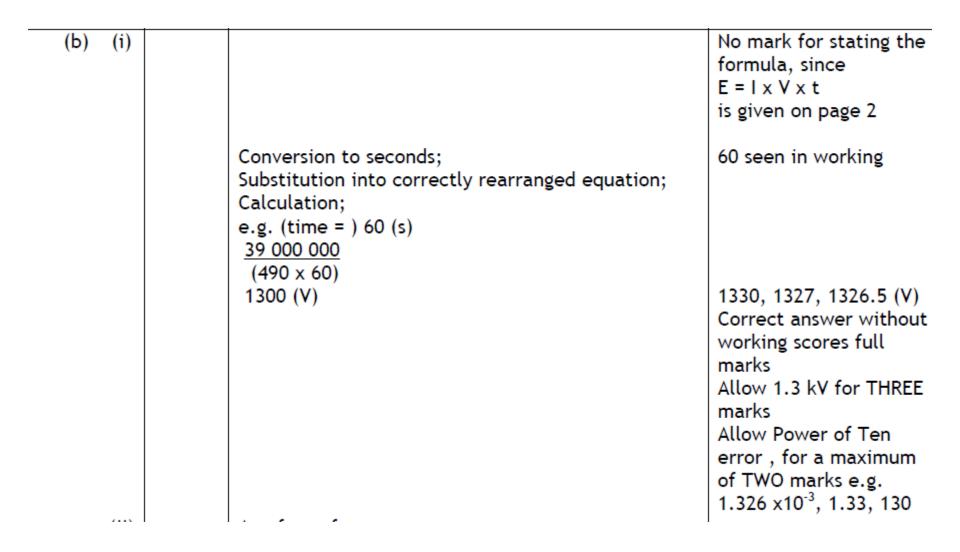
(ii) Complete the table by inserting the missing value.

(1)

Power in W	Voltage in V	Current in A
700	240	
2400	240	10

(b) It takes 3.5 hours to recharge the battery fully.

The average current supplied by the charger is 400 mA.


(i)	St: (b)	ate 1 (i)	the equation linking charge. current Charge = current x time;	Accept rearrangements and standard symbols e.g. current = <u>charge</u> time Q = I x t I=Q/t ignore units	1
		(ii)	Substitution; Calculation; Matching correct unit i.e. coulomb/C; e.g. Q = 400 x 3.5 x 3600	Allow mC	3
	(2)		1000 5000 C	Allow 5040 MAX 2 if time not converted into s (1.4, 1400, 60, 60 000,seen) POT error seen	

charge = unit

(b) The student uses voltmeter and ammeter readings to find the resistance at each temperature.

(b)	 (i) Voltage = current x resistance; (ii) Convert millioners to come OD kilo obmotto 	Allow V = IR Allow rearrangements ignore a bald 'triangle'	1
	Convert milliamps to amps OR kilo-ohms to ohms; Substitution into <i>correct</i> equation & rearrangement; Calculation to greater than 1SF;	'show that' question, working must be shown for full mark	3
	2.6 mA = 0.0026 A (R) = $\frac{13.2}{0.0026}$ = 5077 (Ω)	Allow 5080, 5076 (truncation) 5.080 with working is worth 2 marks 5.08 with no working is worth 1 mark	

(ii) Show that the resistance of the thermistor at 80 °C is about 5000 Ω .

6 The photograph shows an electric heater.

	heating elements								
Question number	Answer	Notes	Marks						
6 a i	Power = current x voltage;	 Accept rearranged equation equation in recognised symbols 	1						
ii	Substitution and rearrangement; Evaluation;	Accept 9 (A) 	1						
	eg I = 2000 / 230 8.7 (A)	 8.695(A) ETC NOT 8.6 incorrect truncation 9.0 incorrect rounding 	1						

(ii) Calculate the current in the heater.

(2)

current = _____A

7 The diagram shows a transformer that is 100% efficient.

a			
Question Number	Answer	Notes	Marks
7 (a) (i)	input power = output power; OR $I_pV_p = I_sV_s;$ OR $I_{in}V_{in} = I_{out}V_{out};$	A dimensionally correct power equation is required. Accept - Power in = Power out $I_1V_1 = I_2V_2$ input power = output power $V_PI_P = V_SI_S$	1
(ii)	Substitution in correctly rearranged equation; Calculation; e.g. $I_s = (2 \times 230)$ 110 4 (A)	Full marks for bald correct answer Accept more s.f. e.g. 4.2, 4.18, 4.1818	2
(b) (i)	$(V_{P}/V_{S}) = (N_{P}/N_{S});$ $\frac{\text{input (primary) voltage}}{\text{output (secondary) voltage}} = \frac{\text{primary turns}}{\text{secondary turns}}$ $\frac{V_{P}}{V_{S}} = \frac{n_{P}}{n_{S}}$	Allow• equation in words with turns ratio shown as a fraction• standard abbreviations :- s, p, in, out, 1, 2• N, n or T for number of turns• "number of coils" for number of turnsRearrangements also to include turns ratio as a fraction $(V_S/V_P) = (N_S/N_P)$ [equation inverted] $V_S = (V_P) (N_S/N_P)$ [Vs as subject] $V_P = (V_S) (N_P/N_S)$ [Vp as subject]	1

(c) (i)	Conversion to seconds;	Allow 3600 or 25200 seen	3
	Substitution in correct formula; Evaluation;	anywhere in working	
	e.g. t = 7 × 3600 (= 25200 s)		
	$E = 0.12 \times 230 \times 7 \times 3600$	(695520)	
	700 000(J)	Correct answer without working scores full marks Accept alternative matching unit e.g. 696 kJ 11592 = 2 marks (time in mins) 193.2 = 2 marks (time in hours) Answer in Wh or Wmin with <u>matching</u> unit scores full marks.	
(ii)	B - same as - less than		1

3

2 An electric kettle is connected to the 230 V mains supply.

The power of the kettle is 960 W.

2	(2)	(i)	B - 960 joules per second;		1
2	(a)	(i)	B - 900 joules per second,		
		(ii)	power = current x voltage;	allow equation as correct symbols and/or rearrangement e.g. I = P ÷ V	1
		(iii)	appropriate calculation (including substitution OR rearrangement); answer to at least 2 sf seen anywhere; e.g.	using 4 (A) to calculate power (920 W) or voltage (240 V) scores 1 mark max.	2
			960 = I × 230 (I =) 4.2 (A)	(4.17391) allow 4.1 (A)	

(b)	(i) (ii)	<pre>input / primary voltage = primary turns output / secondary voltage secondary turns secondary turns substitution into a correct equation;</pre>	allow • equation in words with turns ratio shown as a fraction • standard abbreviations :- s, p, in, out, 1, 2 • N or n for number of turns (condone T for number of turns) • "number of coils" for number of turns rearrangements also to include turns ratio as a fraction (Vs/VP) = (Ns/NP) [equation inverted] Vs= (VP) (Ns/NP) [Vs as subject] VP= (Vs) (NP/Ns) [VP as subject]	
		evaluation (including rearrangement); e.g. 44 / V = 520 /30 (V =) 2.5 (V)	allow 3, 2.53, 2.54, 2.538	

(b) (i)	power = voltage × current;	P=I× Condo	one a m ct symb	ix of	1	d weighing 400 000 N ip between work don	through 190 m. ne, force and distance moved.	(1)
(ii)	Substitution and calculation; Conversion to megawatts; e.g. P=I×V P= 4000 × 600 = 2 400 000 (W) = 2 400 000 ÷ 1 000 000 = 2.4 (MW)	1 000 corre		en	2	done on the load.		(2)
The machine uses	an electric motor connected to a 600 V d.c. supply.	9 ((c) (i)	work do	ne = force	× distance (moved)	Accept symbols W=F×d	1
	ent in the motor is 4000 A.		., .,				W =Fd	
(i) State the equat	ion linking power, current and voltage.		(ii	Calculat	on; k = 400 00	0 × 190	Accept	2
(ii) Calculate the m	naximum power available from the motor.						76 MJ with correct unit 7.6 \times 10 ⁷ (J) 76 \times 10 ⁶ (J)	
		((d) (i)	Substitu P = W/t Rearran	-	en equation;	No mark for the equation as it is given in QP Substitution and rearrangement in either order	3 3)
	maximum power =			t = 67 ÷	on; ' ÷ t 1.9	worth 2	Or (in joules and watts) 67 000 000 ÷ 1 900 000 (35.26) correct answer without working =3	
			(ii		of :- nger /eq;		Ignore: unqualified comments about the amount of work done	1

(b) The man presses a metal button to operate the lift.

There is a spark and the man receives an electric shock.

(ii) substitution and rearrangement; evaluation; -1 for POT error	rds or correct 1 nbols J. Q = I × t	symbols	charge = current × time;	(i)	(b)
e.g. (I =) 0.0017 ÷ 0.075 (I =) 0.023 A	or mA ork ependently 02, 0.0227 etc. ndone 0.022, 0226 etc. mA gets 3	A or mA mark independe 0.02, 0.02 condone (0.0226 et 23 mA ge	evaluation; unit; e.g. (I =) 0.0017 ÷ 0.075	(ii)	

current = unit

(ii) The cylinder contains air at a pressure of 21 000 kPa.

The volume o	f air in the	cylinder is	15 A litres
--------------	--------------	-------------	-------------

Question Number	Answer	Acceptable answers	Mark
1(b)(ii)	substitution (1) either	$V_1P_1 = 15 \times 21000 = 315000$ (1 mark)	
	$100 \times V = 15.0 \times 21\ 000$ or $V = 15.0 \times 21\ 000$	$V_2P_2 = 100 \times 3200 = 320000 (1 mark)$	
	100 evaluation (1)	award full marks for	
	3 150(litres)	3150 (litres) without working	(2)

Question Number	Answer	Acceptable answers	Mark
1(b)(iii)	substitution (1) $21\ 000\ (\times\ V) = P\ (\times\ V)$ $305\ 278$	give full marks for correct answer, no working	
	volume same (1) evaluation (1) 19 100 (kPa)	transposition accept 19141 (kPa) or 19000 and numbers rounding down to 191 00	(3)

AQA June 2015

7 A 'can-chiller' is used to make a can of drink colder.

Figure 7 shows a can-chiller.

7(a)	4200	allow 2 marks for correct substitution ie 6930 = 0.330 x c x 5.0	3	AO2 AO1 P1.1.4d
		answers of 1050 or 840 or correctly calculated answer from correct substitution of incorrect temperature change or identification of temperature change ie 5 °C gain 1 mark		
	J/kg°C	accept J/kg K	1	

Figure 7

Specific heat capacity =	 unit	

iGCSE January 2016

2 The photograph shows some large concrete cubes.

Charles and the second state

Question number			Answer	Notes	Marks
2	(a)		10 000; N;	allow 9800, 9810, 10 ⁴ allow "newton(s)" marks are independent	2
	(b)	(i)	density = mass / volume;	allow abbreviation, e.g. $\rho = m/V$, d = m/V or rearrangements	1
		(ii)	substitution OR rearrangement; evaluation;	award if either seen in working	2
			e.g. 2300 = 1000/volume = 0.43 (m ³)	allow 0.4, 0.434, 0.435, 0.4347 condone 0.44	

iGCSE January 2015

9 The volume of a piece of brass is 16.3 cm³.

A student measures its mass using an electronic balance.

The mass of the brass is 138 g.

(a) (i) State the equation linking density, mass and volume.

Question number	Answer	Notes	Marks
9 (a) (i)	density = <u>mass</u> volume	Allow symbols and rearrangements, e.g. ρ = m / V	1
(ii)	substitution into correct equation; calculation; matching unit; e.g.		3
	Density = $138 \div 16.3$ = 8.47 g/cm ³	8.466, 8.5	

density = unit

(d) The average density of the hot air in the balloon is 0.95 kg/m³.

The volume of this air is 2800 m³.

(i) State the equation linking density, mass and volume.

(d) (i	Density = <u>mass</u> ; volume	Accept symbols or rearrangement e.g. ρ=m/V	1
(ii) Substitution into correct equation;	allow sub and rearrangement in either order	3
	Rearrangement;		
	Evaluation; e.g. 0.95 = <u>m</u>		
	2800		
	m = 0.95 x 2800		
	= 2700 (kg)	2660	

mass of hot air = kg