CP1 Revision Mat - Grade 4 - Grade 5

physical quantity	unit name	unit symbol
length	metre	m
mass	kilogram	kg
time	second	s
electric current	ampere	A
temperature	kelvin	K
amount of substance	mole	mol
frequency	hertz	Hz
force	newton	N
energy	joule	J
power	watt	W
pressure	pascal	Pa
Electric charge	coulomb	C
Electric potential difference	volt	V
Electric resisitance	ohm	Ω
Magnetic flux density	tesla	T

9. An estimate for the thickness of a layer of graphene is 0.335 nanometres.
10. An estimate for the thickness of a layer of graphene is 0.335 nanometres. 1 nanometre is the same as 10^{-9} metres.

 Give your answer in metres, to 3 significant figures, in standard form. (3)

Thickness of one layer in metres: $0.335 \times 1 \times 10^{-9}=3.35 \times 10^{-10} \mathrm{~m}$

\qquad
Describe what a physical quantity is. (2)
A physical property that can be quantified by measurement
A physical quantity can be expressed using a number and a unit
2. Describe what SI base and derived units are. (2)

SI base units are a set of 7 standard units from which all others can be derived

A derived unit is one obtained by multiplying and dividing SI base units. together
. Recall the SI base units (6) and derived units (9) for physical quantities including the unit symbols.

SI base units		
physical quantity	unit name	unit symbol
distance	metre	m
mass	kilogram	kg
time	second	s
current	ampere	A
temperature	kelvin	K
amount of substance	mole	mol

Derived units		
physical quantity	derived unit	abbreviation
frequency	hertz	Hz
force	newton	N
energy	ioule	J
power	watt	W
pressure	pascal	Pa
electric charge	coulomb	C
electric potential difference	volt	V
electric resistance	ohm	Ω
magnetic flux density	tesla	T

5. Write the following in the shortest form using multiples and submultiples e.g. $45000 \mathrm{~W}=45 \mathrm{~kW}(5)$
a. $0.00005 \mathrm{~V}=0.5 \mathrm{~mm}$
b. $12000 \mathrm{~g}=12 \mathrm{~kg}$
c. $0.000025 \mathrm{~m}=25 \mu \mathrm{~m}$
d. $11000000 \mathrm{~V}=11 \mathrm{MV}$
e. $0.0000079 \mathrm{~A}=7.9 \mu \mathrm{~A}$
6. Write the following values without using multiples or submultiples e.g. $5.2 \mathrm{~kW}=5200 \mathrm{~W}$ (5)
a. $6.8 \mathrm{kV}=6800 \mathrm{~V}$
b. $15 \mathrm{~mA}=0.015 \mathrm{~A}$
c. $30 \mu \Omega=0.00003 \Omega$
d. $20 \mathrm{kHz}=20000 \mathrm{~Hz}$
e. $17.5 \mathrm{nA}=0.0000000175 \mathrm{~A}$
7. Convert the following. (5)
a. 7.5 minutes into seconds $7.5 \times 60=450 \mathrm{~s}$
b. 3.5 hours into seconds $3.5 \times 60 \times 60=12600 \mathrm{~s}$
c. 12 minutes into seconds $12 \times 60=720$ s
d. 4.25 hours into seconds $4.25 \times 60 \times 60=15300$ s
e. 0.45 hours into seconds $0.45 \times 60 \times 60=1620$ s
8. The masses of the four "gas giants" are given in the table. (4)

Planet	Jupiter	Saturn	Uranus	Neptune
Mass (kg)	1.90×10^{27}	5.96×10^{26}	8.68×10^{25}	1.02×10^{26}

a. Arrange the four planets by order of mass, from the lightest to the heaviest.

Uranus, Neptune, Saturn, Jupiter
b. The mass of the Earth is $5.98 \times 10^{24} \mathrm{~kg}$. (2)

Approximately how many times greater is Saturn's mass than that of the Earth?
$\times 10^{26}$
$\frac{\times 10^{26}}{\times 10^{24}}=\times 10^{2}=100$
Saturn's mass is approximately 100x greater than that of the Earth
c.i. The radius of Neptune is $2.43 \times 10^{7} \mathrm{~m}$.

Use the equation
volume of a sphere $=\frac{4}{3} \times \pi r^{3}$
to find the volume of Neptune in m^{3}.
Use 3.14 as the value for π. (2)
$\frac{4}{3} \times 3.14 \times\left(2.43 \times 10^{7}\right)^{3}=6.01 \times 10^{22}$

$$
\begin{aligned}
& \text { ii. Calculate the density of Neptune. } \\
& \text { Give your answer in } \mathrm{kg} / \mathrm{m}^{3} .(3) \\
& \text { density }=\frac{\text { mass }}{\text { vollümème. }}=\frac{1.02 \times 10^{26}}{6.01 \times 10^{222}}=1.70 .0 . \mathrm{kg} / \mathrm{m}^{3} \ldots
\end{aligned}
$$

1	$d=s \times t$	d	distance	m	12	$P=\frac{E}{t}$	E	energy	1
		s	speed	m/s			P	power	W
		t	time	${ }^{\text {s }}$			t	time	s
2	$a=\frac{\Delta v}{t}$	a	acceleration	$\mathrm{m} / \mathrm{s}^{2}$	13	$M=F \times d$	d	distance	m
		Δv	change in velocity	m / s			F	force	N
		t	time	s/s ${ }^{2}$			M	moment	Nm
3	$F=m \times a$	F	acceleration	$\frac{\mathrm{m} / \mathrm{s}^{2}}{\mathrm{~N}}$	14	$E=V \times Q$	Q	charge	C
		m	mass	kg			E	energy	J
4	$W=m \times g$	g	gravitational field strength	N/kg			V	potential difference	V
		m	mass	kg	15	$Q=I \times t$	Q	charge	c
		W	weight	N			I	current	A
5	$p=m \times v$	m	mass	kg			t	time	S
		p	momentum	$\mathrm{kg} \mathrm{m} / \mathrm{s}$	16	$V=I \times R$	I	current	A
		v	velocity	m / s			V	potential difference	V
6	$E_{P}=m \times g \times \Delta h$	h	change in height	m			R	resistance	Ω
		\underline{g}	gravitational field strength	$\begin{gathered} \mathrm{N} / \mathrm{kg} \\ \mathrm{~J} \end{gathered}$	17	$P=I \times V$	I	current	A
		m	mass	kg			P	power	W
7	$E_{K}=\frac{1}{2} \times m \times v^{2}$	E_{K}	kinetic energy	」			V	potential difference	V
		m	mass	kg	18	$P=I^{2} \times R$	I	current	A
		v	velocity	m / s			P	power	W
8	$\text { efficiency }=\frac{\text { useful energy out }}{\text { total energy in }}$						R	resistance	Ω
					19	$\rho=\frac{m}{V}$	ρ	density	$\mathrm{kg} / \mathrm{m}^{3}$
9	$v=f \times \lambda$	f	frequency	Hz			m	mass	kg
		λ	wavelength	m			V	volume	m^{3}
		v	wave speed	m / s	20	$F=k \times e$	e	extension	m
10	$v=\frac{d}{t}$	d	distance	m			F	force	N
		v	time	m / s			k	spring constant	N / m
11	$W=F \times d$	d	distance		21	$P=\frac{F}{A}$	A	area	m^{2}
		F	force				F	force	N
		W	work done/energy transferred				P	pressure	Pa

1. If a force of $\mathbf{1 3 N}$ is applied over a distance of 71 m , how much work is done? $W=F \times d=13 \times 71=923 \mathrm{~J}$
2. A frog covers 17 metres in 34 seconds, what is its speed? $s=\frac{d}{t}=\frac{17}{34}=0.5 \mathrm{~m} / \mathrm{s}$
3. If a circuit has a potential difference of $\mathbf{6 V}$ and a current of 4 A what is the circuit's resistance? $R=\frac{V}{I}=\frac{6}{4}=1.5 \Omega$
4. If the force applied to a spring is $\mathbf{3 0 0 N}$ and the spring extends by $\mathbf{2 m e t r e s}$, what is the spring constant? $k=\frac{F}{e}=\frac{300}{2}=150 \mathrm{~m}$
5. A 200W toaster takes 2 minutes to toast some bread. How much energy was used? $E=P \times t=400 \mathrm{~J}$
6. A $\mathbf{2 k g}$ box was lifted onto a $\mathbf{3 m e t r e}$ shelf ($\mathbf{g}=\mathbf{1 0} \mathbf{N} / \mathbf{k g}$) how much Gravitational potential energy has it gained? $E=m g h=2 \times 10 \times 3=60 \mathrm{~J}$
. A 110kg rugby player runs at a velocity of 6 metres per second, what is his momentum? $p=m \times v=110 \times 6=660 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
7. A $12 \mathbf{k g}$ dog has an acceleration of $\mathbf{2 m} / \mathbf{s}^{\mathbf{2}}$, how much force was needed for this acceleration? $\mathrm{F}=a \times m=2 \times 12=24 \mathrm{~N}$
8. Usain Bolt has a mass of $90 \mathbf{k g}$ and runs at a velocity of $11 \mathrm{~m} / \mathbf{s}$, what is his kinetic energy? $E=\frac{1}{2} \times m \times v^{2}=\frac{1}{2} \times 90 \times 11^{2}=5445 \mathrm{~J}$

22	$v^{2}-u^{2}=2 \times a \times d$	a	acceleration	$\mathrm{m} / \mathrm{s}^{2}$
		d	distance	m
		v	final velocity	m/s
		u	initial velocity	m / s
23	$F=\frac{(m v-m u)}{t}$	F	force	N
		$m v$	final momentum	kg m/s
		mu	initial momentum	$\mathrm{kg} \mathrm{m} / \mathrm{s}$
		t	time	s
24	$E=V \times I \times t$	I	current	A
		E	energy transferred	J
		V	potential difference	V
		t	time	s
25	$F=B \times I \times l$	I	current	A
		F	force	N
		l	length	m
		B	magnetic field strength	T
26	$\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}}=\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}$	N_{P}	number of turns (primary coil)	
		N_{S}	number of turns (secondary coil)	
		V_{P}	potential difference (primary coil))
		V_{S}	potential difference (secondary	oil) ${ }^{\text {V }}$
27	$V_{\mathrm{p}} \times I_{\mathrm{p}}=V_{\mathrm{s}} \times I_{\mathrm{s}}$	I_{P}	current (primary coil)	A
		I_{S}	current (secondary coil)	A
		V_{P}	potential difference (primary coil)) V
		V_{S}	potential difference (secondary coild	oil)V
28	$E=m \times c \times \theta$	θ	change in temperature	K
		E	energy transferred	J
		m	mass	kg
		c	specific heat capacity	J / kg K
29	$E=m \times L$	E	energy transferred	J
		m	mass	kg
		L	specific latent heat	J/kg
30	$P_{1} \times V_{1}=P_{2} \times V_{2}$	P_{1}	pressure (1)	Pa
		P_{2}	pressure (2)	Pa
		V_{1}	volume (1)	m^{3}
		V_{2}	volume (2)	m^{3}
31	$E=\frac{1}{2} \times k \times e^{2}$	E	energy	J
		e	extension	m
		k	spring constant	N/m
32	$p=h \times \rho \times g$	ρ	density	$\mathrm{kg} / \mathrm{m}^{3}$
		g	gravitational field strength	N/kg
		h	depth	m
		p	pressure	Pa

10. A washing machine uses a 3A current and runs on a potential difference of 230V, what isthe power rating of the machine? $P=I \times V=3 \times 230=690 \mathrm{~W}$
11. A lorry of mass $\mathbf{2 0} 000 \mathrm{~kg}$ produces a force of $\mathbf{3 0 k N}$, calculate the acceleration. $\quad a=\frac{1}{\mathrm{~m}}=\frac{3}{20000}=1.5 \mathrm{~m} / \mathrm{s}$
12. A Bugatti covers $32 \mathbf{k m}$ in 20 minutes, what is its speed in a) $\mathbf{m} / \mathbf{s} \mathbf{b} \mathbf{)} \mathbf{k m} / \mathbf{h} \boldsymbol{a}$ a) $s=\frac{d}{t}=\frac{32000}{20} \times 60$
13. How much does a 71kg girl weigh on the moon? (g=1.kN/kg) W=m $\times g=71 \times 1.6=114 \times 60$
14. A cricket ball of mass 200 g travels at $20 \mathrm{~m} / \mathrm{s}$, what is it's a) momentum b) kinetic energy?

15. How much work must be done to push a 1750 kg car back home, a distance 0 of 3.4 km ?

a) $p=m \times v=0.2 \times 20=4 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \quad$ b) $0.5 \times \mathrm{m} \times v^{2}=0.5 \times 200 \times 400=40000 \mathrm{~J}$

Weight $=$ mass $\times g=1750 \times 10=17500 \mathrm{~N}$
$W=F \times d=17500 \times 3400=59500000 \mathrm{~J}$

1. If a force of $71 \mathbf{N}$ is applied over a distance of 110 m , how much work is done? 7810 J

2. A frog covers $0.5 \mathbf{k m}$ in $\mathbf{2 5}$ seconds, what is its speed? $20 \mathrm{~m} / \mathrm{s}$

3. If a circuit has a potential difference of 6 kV and a current of 400 mA what is the circuit's resistance?
4. If the force applied to a spring is 316 MN and the spring extends by 0.2 metres, what is the spring constant?
5. A 0.34 kW toaster takes 21 seconds to toast some bread. How much energy was used? 7140 J
6. A 2 g box was lifted onto a 300 mm shelf ($\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$) how much Gravitational potential energy has it gained?
7. A 150000 g rugby player runs at a velocity of $10 \mathrm{~km} / \mathrm{h}$, what is his momentum? $417 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
8. A 15000000 mg dog has an acceleration of $4.5 \mathrm{~m} / \mathrm{s}^{2}$, how much force was needed for this acceleration?
9. Usain Bolt has a mass of 90 kg and runs at a velocity of $30 \mathrm{~km} / \mathrm{h}$, what is his kinetic energy? 3125 J .
10. A washing machine uses a 6000 mA current and runs on a potential difference of 0.4 kV , what is the power rating of the machine? 2400 W

CP2 Revision Mat - Grade 4 - Grade 5

Explain the difference between vector and scalar quantities and provide specific examples.
Vector: has a magnitude (size) and direction, e.g. velocity, acceleration Scalar: has a magnitude (size) only, e.g. speed, distance, mass
Define velocity
Speed in a given direction
Calculate the speed travelled between a) $0 s-6 s$ b) $6 s-15 s$ c)
15 s -20s in Figure 1.
a) $\mathrm{s}=\frac{18}{6}=3 \mathrm{~m} / \mathrm{s}$ b) $\mathrm{s}=\frac{0}{9}=0 \mathrm{~m} / \mathrm{s} \mathrm{c)} \mathrm{~s}=\frac{32-18}{5}=\frac{14}{5}=2.8 \mathrm{~m} / \mathrm{s}$

Analyse Figure 2 to:

a. Calculate the acceleration between a) $0 s-6 s$ b) $6 s-15 s$ c) 15 s -20s

$$
\text { a) } a=\frac{34}{6}=5.67 \mathrm{~m} / \mathrm{s}^{2} \text { b) } a=\frac{0}{9}=0 \mathrm{~m} / \mathrm{s}^{2} \text { c) } a=\frac{-34}{5}=-6.8 \mathrm{~m} / \mathrm{s}^{2}
$$

b. Calculate the distance travelled between a) $0 s-6 s$ b) $6 s-$ 15 s c) 15 s - 20 s
a) $d=\frac{34 \times 6}{2}=102 \mathrm{~m}$ b) $d=34 \times 9=306$ c) $d=\frac{34 \times 5}{2}=85 \mathrm{~m}$

Describe three methods for measuring the speed of an object.

1. use a rolling tape measure, markers, and a stopwatch
2. record a video of known frames per second, see how far the object moves per frame
3. use calibrated light gates

State the acceleration due to gravity $10 \mathrm{~m} / \mathrm{s}^{2}$.
State Newton's First Law
An object at rest or moving at a constant velocity will continue to do so unless acted upon by an external resultant force
Calculate the resultant force on these objects and describe the motion of the object.

Force on an object due to gravity
Describe how weight is measured
Suspend object from a calibrated spring balance OR a newton meter Read off weight value from scale
Describe how the weight of an astronaut changes during a trip to the surface of the moon and back.
Weight greatest on surface of Earth, decreases to a minimum value as astronaut moves away from Earth, then begins to increase again. Weight is lower on the moon than the Earth. Reverse on return trip.

Figure 1. Distance-Time graph

Figure 2. Velocity-Time graph

Everyday Experience

Everyday Experience	Speed (m.s ${ }^{-1}$)
Walking	1
Running	3
Cycling	6
Driving	12
Sound	340
Wind	15
Light	300000000

Factor effecting Stopping Distance Time (s)

Effect on Stopping Distance \& Explanation Greater mass -> greater stopping distance Mass of the vehicle

Speed of the vehicle Drivers reaction time Quality of brakes State of the road | Greater speed -> greater stopping distance |
| :--- |
| Faster reaction time -> smaller stopping distance | Greater quality -> smaller stopping distance Amount of friction between tyres and road

Describe a method to investigate the relationship between force, mass and acceleration by varying the masses added to trolleys.

1. Set up equipment: ramp, trolley, card, light gates, unit masses, hanging hook, string, clamp and stand, pulley
2. Measure length of card on trolley and input into light gates ht of ramp until trolley just starts to move
3. Attach trolley to the hanging mass using string, hold the trolley still at the start line, then let go of trolley
4. Record the speed reading on the light gates
5. Repeat three+ times and calculate an average
6. Repeat for different values of mass attached to hanging hook

Explain why we say this object is accelerating.

Velocity is speed in a direction

Velocity is speed in a direction
\checkmark An object travelling in a circle is constantly changing direction
So constantly changing velocity
Acceleration is rate of change of velocity, $a=\frac{\Delta v}{\Delta+}$
So the object is accelerating

Explain methods of measuring human reaction times and recall typical results
Typical reaction time: $0.2-0.6 \mathrm{~s}$
Have one person drop a vertical ruler, the second person catches it
Reaction time is related to distance the ruler fell before being caught
Define the term stopping distance.
stopping distance $=$ thinking distance + braking distance
Total distance a vehicle covers between a driver spotting a hazard and
the vehicle coming to a complete stop

Describe how stimulants, depressants and distractions effect reaction time.
Stimulants decrease reaction times (driver reacts faster)
Depressants increase reaction times (driver reacts slower)
Distractions increase reaction times (driver reacts slower)
Explain the dangers caused by large decelerations and estimate the forces involved in typical situations on a public road A large deceleration is dangerous because it requires a large force ($F=a \times m$) A car is $\sim 1000 \mathrm{~kg}$, stops in $\sim 1 \mathrm{~s}$, typical speed of a car is $\sim 13 \mathrm{~m} / \mathrm{s} . \quad\left(a=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}\right)$

Describe in full, the term inertial mass.

A measure of how difficult it is to change the velocity of an object
The ratio of force over acceleration (inertial mass $=$ force \div acceleration)
State Newton's third law
Every action has an equal and opposite reaction

Identify the action reaction pairs.

A Driving force and friction
B Push force and contact force \qquad

Describe the conservation of momentum in collisions

Total momentum before a collision = total momentum after a collision in

a closed system

Describe examples of momentum in collisions

e.g. snooker, car crash - two objects collide (hit each other). Momentum is transferred between them but the total momentum is conserved.
In a crash test two identical cars of mass 900 kg move towards each other. Before impact, Car P has a speed of $14 \mathrm{~m} / \mathrm{s}$ and Car Q has a speed of $18 \mathrm{~m} / \mathrm{s}$.

i) Work out the total momentum of the two cars before

impgct. $m \times v \quad \mathrm{P}: p=900 \times 14=12,600 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Q: $p=900 \times-18=-16,200 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \quad 12,600-16,200=-3600 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
After impact the cars move off together to the left ii) After impact the cars move off together to the left. Calculate the speed that the two cars move off at after impact.
$v=\frac{p}{m}=\frac{3600}{900+900}=\frac{3600}{1800}=2 \mathrm{~m} / \mathrm{s}$ to the left

d	s	t
420	15	28
119	7	17
700	20	35
500	8.33	60
200	8	25
1700	75	22.7

d	s	t
54	0.3	180
22.2	55.5	0.4
450	20.45	22
320	20	16
52000	64.5	806
6400	330	19.4

a	Δv	t
3	30	10
8	40	5
2	60	30
10	190	19
6	84	14
3	24	8

a	Δv	t
0.8	4	5
0.16	8	50
5.3	117	22
4	24.8	6.2
30	9	0.3
5	1250	250

g	m	W
5	400	2000
26.3	1.9	50
1.6	21.25	34
10	8.2	82
10	5	50
10	90	900

g	m	W
10.4	175	1825
1.375	0.4	0.55
9.81	25.9	254
2.5	4800	12000
9.81	0.05	0.49
23	45.3	1042

a	F	m
5	35	7
14	84	6
5	50	10
7	658	94
8	64	8
10	125	12.5

a	F	m
6.25	4	0.64
0.0298	7.1	238
6.8	8412	1237
9.42	5.28	0.56
3.5	20.5	5.86
7.25	109	15

1	$d=s \times t$	d	Distance Travelled	m
		s	Speed	m/s
		t	Time Taken	s
2	$a=\frac{\Delta v}{t}$	a	Acceleration	$\mathrm{m} / \mathrm{s}^{2}$
		Δv	Change in Velocity	m / s
		t	Time Taken	s
3	$F=m \times a$	a	Acceleration	$\mathrm{m} / \mathrm{s}^{2}$
		F	Force	N
		m	Mass	kg
4	$W=m \times g$	g	Gravitational Field Strength	N/kg
		m	Mass	kg
		W	Weight	N
5	$p=m \times v$	m	Mass	kg
		p	Momentum	$\mathrm{kg} \mathrm{m} / \mathrm{s}$
		v	Velocity	m/s

m	p	v	m	p	v
20	100	5	30667	460000	15
14	98	7	0.003	0.27	90
7	21	3	20000	90000	4.5
5	60	12	0.0056	0.460	82
50	125	2.5	325	7.5×10^{4}	231
15	105	7	1.3×10^{3}	351	0.27

1. Weight - assume $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$ on Earth:
a. Calculate the weight of a 45 kg girl 441 N
b. A box weighs 49 N . What is its mass? 4.59 kg
c. A 85 kg astronaut in orbit weighs only 23 mN . What is the gravitational field strength? $0.271 \mathrm{mN} / \mathrm{kg}$ or $2.71 \times 10^{-4} \mathrm{~N} / \mathrm{kg}$
2. Distance and speed:
a. Calculate the distance a car will travel in 30 s when moving at $12 \mathrm{~m} / \mathrm{s} .360 \mathrm{~m}$
b. How long will it take a pupil to walk to a lesson 70 m away at $1.5 \mathrm{~m} / \mathrm{s}$? 47 s
c. What is the speed (in m/s) of a car that travels 30 km in 45 minutes? $11.1 \mathrm{~m} / \mathrm{s}$
3. Acceleration and speed:
a. Calculate the acceleration of a sprinter who takes 0.70 s to reach their maximum speed of $11 \mathrm{~m} / \mathrm{s} .15 .7 \mathrm{~m} / \mathrm{s}^{2}$
b. A penny dropped accelerates at $9.8 \mathrm{~m} / \mathrm{s}^{2}$. How fast will it travel when it hits the bottom 3.6 s later? $35.3 \mathrm{~m} / \mathrm{s}$
c. How many seconds will it take a car to accelerate from $45 \mathrm{~km} / \mathrm{hr}$ to $90 \mathrm{~km} / \mathrm{hr}$ at $1.5 \mathrm{~m} / \mathrm{s}^{2}$? 8.3 s 4. Force and acceleration:
a. Calculate the force necessary to accelerate a 10 kg mass by $17 \mathrm{~m} / \mathrm{s}^{2} .170 \mathrm{~N}$
b. What acceleration will a car of mass 1100 kg experience if a force of 550 N acts on it? $0.5 \mathrm{~m} / \mathrm{s}^{2}$
c. An aircraft's engines provide a thrust of 240 kN . What is its mass if it accelerates by $8.0 \mathrm{~m} / \mathrm{s}^{2}$?

5. Momentum:

30000 kg
a. Calculate the momentum of a bullet of mass 0.010 kg travelling at $400 \mathrm{~m} / \mathrm{s} .4 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
b. A bike and rider have a combined momentum of $1000 \mathrm{kgm} / \mathrm{s}$. If their velocity is $12 \mathrm{~m} / \mathrm{s}$, what is their combined mass? 83.3 kg
c. What is the velocity of a 58 g tennis ball with a momentum of $2.4 \mathrm{kgm} / \mathrm{s} ? 41400 \mathrm{~m} / \mathrm{s}$

CP3 Revision Mat - Grade 4 - Grade 5

3.3 Draw and annotate diagrams to represent a) a bike

 pressing the brakes b) a burning match c) a swinging pendulum
Explain what is meant by conservation of energy

Energy can be stored, transferred between stores, and dissipated - but it can never be created or destroyed. The total energy of a closed system doesn't change.

Describe the stores and pathways when:

a an object is projected upwards or up a slope Kinetic Energy is transferred to Gravitational Potential Energy by a mechanical transfer \qquad
b a moving object hitting an obstacle
Kinetic energy of object transferred mechanically to kinetic energy of obstacle, and thermal energy of obstacle and surroundings
c an object being accelerated by a constant force Work is done by a force on an object. This work is converted to the object's kinetic store mechanically

d a vehicle slowing down

Energy in kinetic store of car transferred mechanically, and
then by heating, to thermal stores of car and road
e bringing water to a boil in an electric kettle
Electrical energy is transferred to Thermal Energy by an electrical transfer
When there are energy _ transfers in a closed system there is __ No change to the total energy in that system

Explain using the term "dissipate" what happens when a mechanical system is in operation.
In a mechanical system, energy is dissipated when two
surfaces rub together. Work is done against friction
which causes heating of the two surfaces - so the
internal (thermal) energy of the surfaces increases.

Describe the un-useful energy transfers in these systems
a) Pressing brakes on a bike

Kinetic energy transferred mechanically to Thermal and Kinetic
a) Electricity flowing through power lines Electrical energy transferred electrically to Thermal and Kinetic
a) A running engine

Chemical energy transferred mechanically to Thermal and Kinetic
a) A swinging pendulum

Kinetic transferred mechanically transferred to
Thermal and Kinetic
a) A mug of coffee

Particles with a lot energy evaporate with Thermal energy

Explain how lubrication and insulation can stop reduce these un-useful energy transfers.
Lubrication decreases friction, which decreases the energy wasted as heat and sound.
Insulation reduces energy transferred wastefully as heat.

Describe the effects of the thickness and thermal
conductivity of the walls of a building on its rate of cooling. The thicker the wall the slower the rate of cooling
The greater the thermal conductivity the faster the rate of cooling
And vice versa
Explain how efficiency can be increased in energy systems.
Efficiency = useful energy / total energy
So efficiency can be increased by reducing energy wasted Lubrication reduces energy wasted as friction
Insulation reduces energy wasted heating the surroundings

Explain patterns and trends in the use of energy resources including fossils fuel use and renewable resources.
Currently most energy is produced from fossil fuels (mostly coal and gas) because it's reliable and available We are moving towards producing more energy from renewable sources but it's expensive and unreliable

Energy Source	Formation / Generation	Uses	Advantages	Disadvantages		
Fossil fuels	Millions of years ago fish died, they got crushed by the weight of the ocean and sediment.	Electricity, Heating, Transportation	Cheap Easy to maintain Much of our infrastructure is designed to run using fossil fuels.	Non-renewable Polluting - releases carbon dioxide and sulphur dioxide (greenhouse gases, acid rain)		
Nuclear fuels	Undergoes a controlled chain reaction to produce heat energy	Electricity, Transportation, Heating	Non-polluting	Non-renewable Very rare Nuclear waste remains radioactive.		
Bio-fuel	Biofuels are fuels made from plant materials, burnt to generate electricity.	Transportation, Heating				Less carbon emissions.
:---						
Reduce our reliance on						
fossil fuels.	\quad	Uses land that could be				
:---						
used to grow food.						
Needs a lot of labour.						
Bioethanol cannot be						

$$
\begin{array}{l|l}
\hline 8 & \text { efficiency }=\frac{\text { useful energy out }}{\text { total energy in }} \\
\hline
\end{array}
$$

Efficiency	Useful Out	Total In
0.75	1500	2000
0.20	60	300
0.50	1000	2000
0.20	120	600
0.90	200	222.2
0.05	4000	80000

Efficiency	Useful Out	Total In
5%	10	200
70%	1050	1500
6%	3000	50000
57%	1442.1	2530
85%	5990	7047
35%	2100	6000

1. Efficiency and energy:
a. Calculate the efficiency of a device that usefully shifts 20 J of energy when supplied with 50J. 0.4
b. A microwave oven has an efficiency of 60%. How much does the internal energy store of a bowl of baked beans increased when 80000 J of energy is supplied to the oven? 48000J
c. A wind farm has an efficiency of 0.17 . If it supplies 120 JJ of energy to the National Grid, how much energy was in the wind's kinetic store? 706TJ
2. Efficiency and power:
a. Calculate the efficiency of a 60 W lightbulb that emits 2.0 W of visible light. 0.033
b. A washing machine has an efficiency of 20%. If the power supplied is 1200 W , how much power is usefully shifted? 240J
c. Steam trains have very low efficiencies - around 5.0%. If it needed 50 MW to pull the carriages, what power must have been supplied? 1GW

CP4 Revision Mat - Grade 4 - Grade 5

Waves transfer \qquad and
information without transferring \qquad matter \qquad _.

Describe how you could prove that sound waves travel through air, not that air travels from source to receptor Vibrate the source through a solid as well as air, it will still travel through, air is not needed for the sound to be transmitted. To prove it requires a medium, try passing the sound through a vacuum chamber, it will not pass through as there are not particles to vibrate.

Describe how you could prove that water waves travel through water, not that water travels from source to receptor. Place a bob in the water, as the wave passes the bob moves up and down with the water, but does not move horizontally, which is the direction that the wave is moving in. Therefore the water itself is not travelling.
\qquad

Identify and define the terms: frequency, wavelength, amplitude, period, wave velocity and wave-front as applied to waves. Annotate the diagram appropriately

Wavelength, λ (if
x-t graph, time
period, T)

Amplitude, A

Frequency - the number of complete waves or cycles which pass a point per second.
Wavelength - Distance between two adjacent peaks or troughs, 0 sompression-to compression.
Annplitude-maxinaun-displacement from therest position Wave velocity - howfast a wave travels in a centain direction Wave-front - points on a wave that vibrate together, i.e. the same point on neighbouring cycles.

Describe longitudinal waves:

Particles vibrate parallel to the direction of energy transfer
\qquad

Describe transverse waves:
Particles vibrate perpendicular (at right angles) to the direction of energy transfer.

Describe the difference between longitudinal and transverse waves by referring to sound, electromagnetic, seismic and water waves wave, e.g. water particles move perpendicular to the waves direction, as do seismic s-waves.
EM waves are made of magnetic and electric fields oscillating
perpendicular to one another.
Longitudinal, particles vibrate, though don't travel, in the same direction as the wave moves. For example, sound waves and seismic_p-waves

Describe how to measure the velocity of sound in air and ripples on water surfaces.

Measure a distance of 300 m , have	
one person stand there with a	
stopwatch and another with a	
starting gun 300 m away. This is the	
displacement, x . When the person	
fires the gun, giving a signal with	
their arm, time how long it takes to	
hear the gun, t . Repeat and	
average, use $v=\frac{f}{t}$ to find the	
velocity.	

Explain how waves will be refracted at a boundary in terms of the change of direction and speed

If a wave enters a more optically dense medium, then it will slow down and bend towards the normal
f it enters a less optically dense medium the wave speeds up and bends away from the normal

Explain why different object have different colours Different wavelengths of light have different colours, objects absorb all the wavelengths of light except the one we see.

Explain why white objects are white and black objects are black.
White objects reflect all wavelengths of light so appear

Explain why some objects are translucent and some are transparent.
Translucent objects absorb more of the light and is scattered inside the object. In transparent objects almost all the light is transmitted and passes straight through.
Explain how colour filters work.
They only transmit light of the colour filter they are and absorb all other colours of light. For example, a blue filter only transmits blue light, all other wavelengths are abosorbed.
What would a blue and yellow jersey look like underneath a yellow filter. Explain your answer.
Yellow with black, the yellow light is able to pass through the filter but all other wavelengths of light, including blue, are absorbed by the filter.
Therefore we only see the yellow part, the blue becomes black.
Explain how to measure the speed, frequency and
wavelength of a wave in a solid bar and waves in a ripple tank. Include a simple apparatus list and the calculations you would use.
Equipment: a metal rod, ruler, microphone and computer, rubber bands, clamps and stands, hammer.
Set up the equipment, the rod is suspended by the two bands from clamp stands so it can swing, the microphone is near the rod and attached to a computer so it can measure the peak frequency. Measure the length of the rod, this is $\frac{\Lambda}{-}$.
Tap the rod and measure the peak frequency, repeat three times and average. This gives us f, the frequency
Use $v=f \lambda$ to find the wave speed.
Equipment: strobe light, ripple tank, ruler, clamp and stand.
Set up the ripple tank with the strobe light directly above, held by a clamp and stand.
Set up the ripple tank so it creates waves, adjust the strobe light until the waves appear to be stationary. The frequency of the strobe light now matches the frequency of the waves, f.
Measure the distance between two adjacent peaks on the waves to get the waverength, λ.
Use $v=f \lambda$ to find the wave speed.

Calculat hie following, giving your answer in standard form, correct to three significant
a) $6.7 \times 10^{3}+4.8 \times 10^{1}$
(b) $1.62 \times 10^{7}-9.83 \times 10^{5}$
(t) $2.04 \times 10^{9} \times 3.66 \times 10^{3}$
(d) $3.427 \times 10^{8} \div 6.841 \times 10^{4}$

5.47×10^{4}
 1.52×10^{7}

7.47×10^{12}
5×10^{3}
(4 Marks)
2. Calculate the following, giving your answer in standard form, correct to three significant figures.
(a) $9.5 \times 10^{-3}+7.3 \times 10^{-2}$
b) $4.82 \times 10^{-9}-6.31 \times 10^{-}$
(c) $4.12 \times 10^{4} \times 9.59 \times 10^{-8}$
(d) $1.01 \times 10^{-7}+2.37 \times 10^{3}$
8.25×10^{-2}
4.76×10^{-9}
3.95×10^{-3}
2.37×10^{3}
(4 Marks)
Grains of sand range in size from $2 \times 10^{-3} \mathrm{~m}$ to 64×10^{-2}
(a) What is the difference between the smallest and largest grains of sand

Give your answer in metres, in standard form.
$64 \times 10^{-2}-2 \times 10^{-3}=0.638 \mathrm{~m} \quad 6.38 \times 10^{-1} \mathrm{~m}$ (b) What is your answer to part (a), when written in millimetres? $0.638 \mathrm{~m}=638 \mathrm{~mm} \quad 638 \mathrm{~mm}$
© Pinpointlearning.c.o.uk

The sun is approximately $1.5 \times 10^{11} \mathrm{~m}$ from Earth. Given speed of ligh is aproviur $3 \times 10^{8} \mathrm{~ms}^{-1}$, how long does it take light from the sun to reach Earth?
Give your answer in minutes and seconds.

$$
s=\frac{d}{t} \rightarrow t=\frac{d}{s}=\frac{1.5 \times 10^{11}}{3 \times 10^{8}}=500 \mathrm{~s}
$$

6. The formula that links wavelength (λ) and frequency (f), is
7. The formula that links wavelength (λ) and frequency (f),

$$
\lambda \times f=3 \times 10^{8} s^{-1}
$$

(a) Green light has a wavelength of approximately $5 \times 10^{--} m$. Calculate its frequency
giving your answer in standard form.
iving your answer in standard form.

$$
f=\frac{3 \times 10^{8}}{\lambda}=\frac{3 \times 10^{8}}{5 \times 10^{-7}}=6 \times 10^{14} \mathrm{~Hz}
$$

$6 \times 10^{14} \mathrm{~Hz}$
b) Red light has a frequency of approximately $4 \times 10^{14} \mathrm{~Hz}$. Calculate its wavelength giving your answer in standard form.

$$
\lambda=\frac{3 \times 10^{8}}{f}=\frac{3 \times 10^{8}}{4 \times 10^{14}}=7.5 \times 10^{-7} \mathrm{~m} \quad 7.5 \times 10^{-7}{ }_{m}
$$

$$
\begin{aligned}
& \text { (4 marks) } \\
& \hline
\end{aligned}
$$

7. If $x=4.1 \times 10^{5}, y=7.7 \times 10^{-2}$ and $z=3.9 \times 10^{7}$, calculate the following, giving your inswers in standard form to 3 sig. fig.
(a) $\frac{x+y}{2} \quad 4.1 \times 10^{5}+7.7 \times 10^{-2}$

$$
\frac{10 \times 10^{7}}{3.9 \times 10}=0.0105
$$

(b) $\frac{y^{2}}{x}$
$\frac{\left(7.7 \times 10^{-2}\right)^{2}}{4.1 \times 10^{5}}=1.45 \times 10^{-8}$
(c) $\sqrt[{\sqrt{\frac{x y}{(z-x)}}}]{\frac{4.1 \times 10^{5} \times 7.7 \times 10^{-2}}{3.9 \times 10^{7}-4.1 \times 10^{5}}}=0.0286$
1.05×10^{-2}

f	λ	v
23.3	0.3	7
12.5	0.4	5
25	10.2	256
450	0.73	330
2	12	24
125	20	2500

f	λ	v
0.27	1500	400
4×10^{13}	7.5×10^{-7}	30000000
525	0.410	215
7×10^{14}	4.3×10^{-8}	30000000
1.2	256	307
360000	0.0004	140

d	t	v
340	20	17
150	10	15
1062	16.6	64
336	24	14
500	25	20
59	0.05	1180

1. Wave speed equation:

a. Calculate the speed of a water wave with a wavelength of 10 m and a frequency of $0.25 \mathrm{~Hz} . v=f \times \lambda=0.25 \times 10=2.5 \mathrm{~m} / \mathrm{s}$
b. The speed of sound is $340 \mathrm{~m} / \mathrm{s}$. What is the wavelength of a sound wave with a frequency of 256 Hz ? $\lambda=\frac{v}{f}=\frac{340}{256}=1.3 \mathrm{~m}$
c. All electromagnetic waves travel at the same speed: $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is the frequency of green light, having a wavelength of 540 nm ?

$$
\lambda=\frac{v}{f} \rightarrow f=\frac{v}{\lambda}=\frac{3 \times 10^{8}}{540 \times 10^{-9}}=5.56 \times 10^{14} \mathrm{~Hz}
$$

CP5 Revision Mat - Grade 4 - Grade 5

All electromagnetic waves are __transverse _ that they travel at $300000000 \mathrm{~m} / \mathrm{s}$, in a vacuum

Identify the sources and receivers of the examples below.

5.9 Describe an investigation into the angles of incidence and refraction in a perspex block.
Equipment: Perspex block, rav box, ruler, pencil, protractor, paper.

Place the block on the centre of a sheet of paper, draw around.
Shine a ray of light into the block and mark where the ray is on the paper and measure its angle of incidence from the normal, which is a line drawn perpendicular to where the light crosses two media, e.g. air and Perspex. Draw another normal and mark where the light leaves the block and measure the angle of refraction, how it bends after leaving the Perspex. If you draw a line between the two normals and measure the angle it refracted by when going in, we get the angle of refraction. Repeat this for a variety of angles, increasing 5° each time, and the plot a graph of angle of incidence against angle of refraction.
\longrightarrow
\qquad
\qquad
\qquad

Explain how radio waves can be generated, transmitted

 and received using electrical circuits.An alternating current is oscillating electrons
Moving electrons produce electric and magnetic fields, i.e. EM waves Frequency of waves produced = frequency of the alternating current So a transmitter with an alternating current will produce EM (radio) waves Waves travel between transmitter and receiver, transferring energy The waves cause electrons to oscillate in the receiver at the same frequency as in the transmitter
If the receiver is connected to a complete circuit an flow. The current will be the same as in the transmitter.

Fill in the table and indicate which type of E.M. radiation can be seen with the naked eye

F \& $\boldsymbol{\lambda}$	Type	Application
Low	radio	communication, broadcasting
Long	microwaves	communication, cooking
	infrared	temperature control, communication (optical fibres)
	visible light	communication, photography
High	ultraviolet	sterilisation (water), fluorescent lights, security pens
	x-rays	medical scanning, airport scanners
Short	gamma	sterilisation (medical equipment, food), medical scanning, cancer treatment

Explain what happens when atomic nuclei change a regarding radiations over a wide frequency range b the result of absorption of a range of radiations If a nucleus is unstable, it may have too much energy inside it. This excess energy is emitted as an EM wave, the energy of the wave depends on the amount of energy released by the nucleus, e.g. gamma radiation is an example of this.
Electrons are found in energy levels, if they gain the right amount of energy from a single EM wave, they can 'jump' up to another energy level and become excited. As they fall back down to a lower level it will release excess energy as an EM wave. The differences between levels vary, so the amount of energy emitted and so the radiation also vary.

Explain how and why different substances absorb, transmit, refract or reflect electromagnetic waves in ways

that vary with wavelength

Waves with shorter wavelengths, like blue or violet, slow down more when they enter a substance than waves with a longer wavelength, like red. Therefore they refract more and so their angle of refraction is
larger.
An object appears a certain colour because it absorbs all the colours of visible light except the one we see, which is reflected, e.g. trees absorb all light except green, which is reflected. $\overline{\text { A filter absorbs all colours of light except the colour of the filter, this }}$ colour is able to be transmitted, so makes the light appear that colour.

Explain the effects of difference in the velocities of

 electromagnetic waves in different substancesDifferent substances can be harder for a wave to travel through than _thers. As an EM wave enters one of these substances, they slow down and their wavelengths get longer, though their frequency stays the same.
The more optically dense, which is a measure of how hard it is for light to pass through something, an object is, the lower the velocity of an EM travelling through it

E.M.	Associated Dangers
microwaves	causes heating of cells
infrared	cause skin burns
ultraviolet	cause sun burns, skin cancer, damage to eyes, blindness
x-rays and gamma rays	cause cancer as they are ionising

Calculat hie following, giving your answer in standard form, correct to three significant
a) $6.7 \times 10^{3}+4.8 \times 10^{1}$
(b) $1.62 \times 10^{7}-9.83 \times 10^{5}$
(t) $2.04 \times 10^{9} \times 3.66 \times 10^{3}$
(d) $3.427 \times 10^{8} \div 6.841 \times 10^{4}$

5.47×10^{4}
 1.52×10^{7}

7.47×10^{12}
5×10^{3}
(4 Marks)
2. Calculate the following, giving your answer in standard form, correct to three significant figures.
(a) $9.5 \times 10^{-3}+7.3 \times 10^{-2}$
b) $4.82 \times 10^{-9}-6.31 \times 10^{-}$
(c) $4.12 \times 10^{4} \times 9.59 \times 10^{-8}$
(d) $1.01 \times 10^{-7}+2.37 \times 10^{3}$
8.25×10^{-2}
4.76×10^{-9}
3.95×10^{-3}
2.37×10^{3}
(4 Marks)
Grains of sand range in size from $2 \times 10^{-3} \mathrm{~m}$ to 64×10^{-2}
(a) What is the difference between the smallest and largest grains of sand

Give your answer in metres, in standard form.
$64 \times 10^{-2}-2 \times 10^{-3}=0.638 \mathrm{~m} \quad 6.38 \times 10^{-1} \mathrm{~m}$ (b) What is your answer to part (a), when written in millimetres? $0.638 \mathrm{~m}=638 \mathrm{~mm} \quad 638 \mathrm{~mm}$
© Pinpointlearning.c.o.uk

The sun is approximately $1.5 \times 10^{11} \mathrm{~m}$ from Earth. Given speed of ligh is aproviur $3 \times 10^{8} \mathrm{~ms}^{-1}$, how long does it take light from the sun to reach Earth?
Give your answer in minutes and seconds.

$$
s=\frac{d}{t} \rightarrow t=\frac{d}{s}=\frac{1.5 \times 10^{11}}{3 \times 10^{8}}=500 \mathrm{~s}
$$

6. The formula that links wavelength (λ) and frequency (f), is
7. The formula that links wavelength (λ) and frequency (f),

$$
\lambda \times f=3 \times 10^{8} s^{-1}
$$

(a) Green light has a wavelength of approximately $5 \times 10^{--} m$. Calculate its frequency
giving your answer in standard form.
iving your answer in standard form.

$$
f=\frac{3 \times 10^{8}}{\lambda}=\frac{3 \times 10^{8}}{5 \times 10^{-7}}=6 \times 10^{14} \mathrm{~Hz}
$$

$6 \times 10^{14} \mathrm{~Hz}$
b) Red light has a frequency of approximately $4 \times 10^{14} \mathrm{~Hz}$. Calculate its wavelength giving your answer in standard form.

$$
\lambda=\frac{3 \times 10^{8}}{f}=\frac{3 \times 10^{8}}{4 \times 10^{14}}=7.5 \times 10^{-7} \mathrm{~m} \quad 7.5 \times 10^{-7}{ }_{m}
$$

$$
\begin{aligned}
& \text { (4 marks) } \\
& \hline
\end{aligned}
$$

7. If $x=4.1 \times 10^{5}, y=7.7 \times 10^{-2}$ and $z=3.9 \times 10^{7}$, calculate the following, giving your inswers in standard form to 3 sig. fig.
(a) $\frac{x+y}{2} \quad 4.1 \times 10^{5}+7.7 \times 10^{-2}$

$$
\frac{10 \times 10^{7}}{3.9 \times 10}=0.0105
$$

(b) $\frac{y^{2}}{x}$
$\frac{\left(7.7 \times 10^{-2}\right)^{2}}{4.1 \times 10^{5}}=1.45 \times 10^{-8}$
(c) $\sqrt[{\sqrt{\frac{x y}{(z-x)}}}]{\frac{4.1 \times 10^{5} \times 7.7 \times 10^{-2}}{3.9 \times 10^{7}-4.1 \times 10^{5}}}=0.0286$
1.05×10^{-2}

f	λ	v
23.3	0.3	7
12.5	0.4	5
25	10.2	256
450	0.73	330
2	12	24
125	20	2500

f	λ	v
0.27	1500	400
4×10^{13}	7.5×10^{-7}	30000000
525	0.410	215
7×10^{14}	4.3×10^{-8}	30000000
1.2	256	307
360000	0.0004	140

d	t	v
340	20	17
150	10	15
1062	16.6	64
336	24	14
500	25	20
59	0.05	1180

1. Wave speed equation:

a. Calculate the speed of a water wave with a wavelength of 10 m and a frequency of $0.25 \mathrm{~Hz} . v=f \times \lambda=0.25 \times 10=2.5 \mathrm{~m} / \mathrm{s}$
b. The speed of sound is $340 \mathrm{~m} / \mathrm{s}$. What is the wavelength of a sound wave with a frequency of 256 Hz ? $\lambda=\frac{v}{f}=\frac{340}{256}=1.3 \mathrm{~m}$
c. All electromagnetic waves travel at the same speed: $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is the frequency of green light, having a wavelength of 540 nm ?

$$
\lambda=\frac{v}{f} \rightarrow f=\frac{v}{\lambda}=\frac{3 \times 10^{8}}{540 \times 10^{-9}}=5.56 \times 10^{14} \mathrm{~Hz}
$$

CP6 Revision Mat - Grade 4 - Grade 5

Label the atom with the names, masses and charges of the subatomic particles and the general areas of the atom. The atom is neutral.

The diameter of a nucleus is $\frac{1 \times 10^{-15}}{x 10^{-10}} \mathrm{~m}$ and the diameter of an atom is $1 \times 10^{-10} \mathrm{~m}$.

Define the term isotope and complete the table below:

Element		Mass No	$\begin{gathered} \text { Atomic } \\ \text { No } \end{gathered}$	Protons	Neutrons	Electrons
	C_{6}^{14}	12	6	6	6	6
		14	6	6	8	6
$\stackrel{C}{17}_{35}^{1}$	${\underset{17}{\|c\|}}_{\substack{37}}^{\mathbf{l}}$	35	17	17	18	17
		37	17	17	20	17

Explain why isotopes can still be neutral.
They have a different number of neutrons to other atoms of the element, but the same number of protons and electrons.
Neutrons have no charge, so don't affect the overall charge Protons are positive and electrons are negative, they cancel giving an overall charge ofo
Explain why some electrons can change orbits.
Electrons are in energy levels.
If they gain energy by absorbing an EM-wave with the right amount of
energy they can move to a higher energy level
If it returns to a lower level, it emits this energy as EM-radiation

Explain how atoms can become ionised referring to the electron orbits only.
Electrons are in energy levels.
If they gain enough energy from a single EM-wave, then they will be able to leave the atom entirely.
The atom now has more protons than electrons, so is an ion.

Type of

What is the half-life of these isotopes.

1. What are possible unit for half life? Seconds, hours, days, years
2. A radioactive isotope has a half life of 14 days. It has an initial count rate of 1080Bq. What will the count rate be after 4 weeks? 270 Bq
3. A radioactive isotope has a half life of 15 minutes. It has an initial count rate of 36000 Bq . What will the count rate be after 1.5 hours? 562.5 Bq
4. A radioactive isotope has a half life of 5000 years. What fraction of the radioactive material will remain after 20000 years? Halves every 5000 years, so $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} x \frac{1}{2}=\frac{1}{16}$
5. A radioactive isotope has a count rate 0 f 4000 Bq and a half life of 12 hours. How long will it
take the count rate to drop to 500 Bq ? $500=\frac{1}{8}$ of 4000 , so 3 half-lives, so 36 hours
6. Use the graph to find the half-life of Plutonium-238. Half-life $=85$ years
7. A radioactive isotope has a count rate $0 f 6400 \mathrm{~Bq}$ and a half life of 4 days. What fraction of the isotope will have decayed after 20 days? What will the count rate now be? Five half-lives, so $\frac{1}{32}$, 200 Bq
8. Before an isotope is placed near the detector a counter givers $\begin{aligned} & \text { dutonium-2 } \\ & \text { Number of }\end{aligned}$ reading of 14 Bq . When the isotope is placed near the reading increases to 2234 Bq . When tested 30 minutes later the count rate has dropped to 569 Bq . What is the half life of the substance? Correct count rates to 2220 Bq and $550 \mathrm{~Bq}, 550$ must be doubled twice to get to 2200 , so two half-lives have passed,
 so the half life is 15 minutes
9. Uranium- 238 has a half-life of 4500 million years. Complete the graph to show the number of nuclei in a sample of U-238 will change over time. Initially there are 100,000 nuclei in the sample.
