Mark Scheme

Q1.

Question Number:	Answer	Additional Guidance	Mark
	an explanation linking:	allow reverse argument	(2) AO 3 2a AO 3 2b
	over the same time / in 300s, more work done / energy transferred in	power in session 1 = $\frac{45.2}{300}$ = 0.15 (kW) or 150(W)	
	session 1 than in session 2 (1)	allow statement that power = work / time	
		or power = <u>energy(transferred)</u> time for MP1	
	(therefore) more power (developed) in session 1 (1)	power in session 2 = $\frac{37.9}{300}$ = 0.13 (kW) or 126(W)	

Question Number:	Answer	Additional Guidance	Mark
		substitution and rearrangement in either order	(3) AO 2 1
	recall and substitution (1)		
	1600 = force x 28	accept f, F or ? for force	
	rearrangement (1)		
	(force) = $\frac{1600}{28}$		
	evaluation (1) 57 (N)	accept values that round down to 57 e.g. 57.14	
		award full marks for correct answer without working	
		award 1 mark for answers of 44800 or 0.0175 and a correct expression relating work, force and distance	

Q3.

	Answer	Additional guidance	Mark
number			
(i)	rearrangement of work = force × distance to give distance = work ÷ force (1)	seeing 2700 ÷ 150	(2)
	substitution and evaluation (1) 18 (m)	Award full marks for correct answer without working	

Question number	Answer	Mark
(ii)	2700 (J)	(1)

Question number	Answer	Additional guidance	Mark
(iii)	rearrangement of KE = ½ mv²		(2)
	$v = \sqrt{(2 \times KE \div m)} (1)$	$v = \sqrt{(2 \times 2700 \div 15)}$ $v^2 = (2 \times 2700 \div 15)$	
	substitution and evaluation (1)		
	19 (m/s)	allow answers that round to 19	
		award full marks for correct answer without working	
		allow alternative route using v ² - u ² = 2ax for full marks	

Q4.

Question Number	Answer	Additional guidance	Mark
(i)	substitution (1) $(\Delta GPE=)$ (0.0)46×10×2.05 evaluation (1)	allow g=9.8(1) m/s ²	(2)
	0.94(3) (J)	0.9 (J) values that round to 0.92 or 0.93 (from using g = 9.8 or 9.81)	
		do not award for 1(J)	
		no POT error in evaluation	
		award full marks for the correct answer without working.	

Question Number	Answer	Additional guidance	Mark
(ii)	recall (1) (KE=) $\frac{1}{2} \times m \times v^2$ substitution (1) (KE=) $\frac{1}{2} \times (0.0)46 \times 3.5^2$		(3)
	evaluation (1) 0.28 (J)	allow answers that round to 0.28 e.g. 0.28175 (J)	
		allow max 2 marks for POT error e.g. 0.00028	
		award full marks for the correct answer without working	

Question	Answer	Additional guidance	Mark
Number			
(iii)	Any value between 0.8 (m) and 0.95 (m) inclusive		(1)

Question Number	Answer	Additional guidance	Mark
(iv)	An explanation linking (the ball) has lost energy (1) identification of what has happened to that energy (1)	accept (energy) dissipated or (transferred to) surroundings / ground or thermal energy or heat / sound or system is not 100% efficient or bounce is not (100%) elastic or squashing (the ball or the ground)	(2)

Question number	Answer	Additional guidance	Mark
(i)	select and substitute (1)		(3) AO2.1
	$(\Delta GPE = m \times g \times \Delta h)$ = 1100 × 3.7 × 1.8 (× 10 ³)		
	evaluation (1)		
	7326000 (J)	any number rounding to 7 300 000	
		7326 scores 1 mark	
	evaluation to 2 s.f. (1)	independent mark -any final answer stated to 2	
	7300000 (J)	s.f.	

Question number	Answer	Additional guidance	Mark
(ii)	select and substitute (1)	ignore minus signs	(2) AO2.1
	$(\Delta KE = \frac{1}{2} \text{ m} \times \text{v}^2)$ = $\frac{1}{2} 1100 \times 88^2$		
	evaluation (1)		
	4 300 000 (J)	accept numbers that round to 4 300 000 (J) e.g. 4 259 200 (J)	
		award full marks for the correct answer without working	

Question number	Answer	Additional guidance	Mark
iii	A description linking three from:	KEY: attempt to	(3)
	work is done against / by gravity (1)	explain how work done contributes towards the energy changes / conservation of energy	AO2.1
	idea of work done by the thrusters / jets (on the rover) (1)	conservation of energy	
	(work done) by air/atmospheric resistance on the parachute (and rover) (1)		
	4. this reduces the kinetic energy (store) (1)		
	5. (there is a) decrease in the gravitational potential energy (store) of the rover (1)		
	6. (there is a) transfer of chemical energy from the thrusters (1)		
	7. energy transferred to thermal energy (store) (1)		
	8. (transfer) mechanically (to the thermal store) (1)	if no other mark scored allow one mark for work	
		= force x distance	

Q6.

Question number	Answer	Additional guidance	Mark
(i)	recall and substitution into (1) $gpe = m \times g \times h$		(2)
	(gpe) = 4.5 x 10 x 20		
	evaluation (1)	allow 90(J) for 1 mark	
	900(J)	award full marks for	
		the correct answer without working	

Question number		Additional guidance	Mark
ii	900(J)	allow ecf from bi	(1)

Question number	Answer	Additional guidance	Mark
iii	recall and substitution (1) power = work done / time taken	allow ecf from bi or bii	(2)
	(power =) 900 / 4 evaluation (1) 200 (W)	accept 230(W), 225(W)	
		award full marks for the correct answer without working	

Q7.

Question Number	Answer	Additional guidance	Mark
(i)	recall (1) (P =) $\frac{E}{t}$ substitution and evaluation (1) (P=) 75 (W)	P = work done ÷ time $P = \frac{45}{0.6}$	(2)
		award full marks for the correct answer without working	

Question Number	Answer	Additional guidance	Mark
(ii)	substitution into E = $\frac{1}{2} \times k \times x^2$ (1) $45 = \frac{1}{2} \times 140 \times x^2$	allow substitution and rearrangement in either order	(3)
	rearrangement (1)		
	$(x =)\sqrt{\frac{2 \times 45}{140}}$	$x^{2} = \left(\frac{E}{0.5k} = \right) \frac{2 \times 45}{140}$ $x^{2} = 0.64(28571)$	
		$x^2 = 0.64(28571)$	
	evaluation (1) 0.8(0) (m)	accept values that round to 0.80 e.g. 0.80178	
		award full marks for the correct answer without working	

Q8.

Question number	Answer	Additional guidance	Mark
	substitution (1) $2,800 = \frac{1}{2} \times 85 \times v^2$ rearrangement (1)	allow substitution and rearrangement in either order	(3) AO2
	$(v^2 =) \frac{2800 \times 2}{85}$	66 or 65.88 seen	
	evaluation (1) v = 8.1 (m/s)	allow values that round to 8.1 e.g 8.1168 award full marks for the correct answer without working	

Question number	Answer	Mark
(a)	С	(1)

Question number	Answer	Mark
(b) (i)	change in GPE = mass \times gravitational field strength \times change in vertical height	(1)

Question number	Answer	Additional guidance	Mark
(b) (ii)	transformation (1)		
	$h = \Delta E \div mg$	accept use of $g = 9.81$	
	substitution (1) $h = 39000 \div (580 \times 10)$		
	evaluation (1)		
	6.7(m)	accept 6.72	
		accept 6.85 (from	
		g = 9.81)	(3)

Question Number:	Answer	Additional Guidance	Mark
	substitution (1)		(2) AO 2 1
	$(KE =) \frac{1}{2} \times 68 \times 12^{2}$	1/2 x 68000 x 12 ² scores 1 mark	
	evaluation (1)		
	4900 (J)	accept values that round to 4900(J) e.g. 4896(J)	
		award full marks for correct answer without working	

Q11.

Question number	Answer		Mark
(i)	An answer that combines the following points of understanding to provide a logical description: • when steam condenses, its molecules move closer together, so the internal energy decreases (1) • when the water from the condensed steam cools, its molecules move more slowly, therefore storing less kinetic energy (1)	allow as water cools, the distance between the particles decreases which increases the intermolecular forces	(2)

Question number	Answer	Additional guidance	Mark
(ii)	equating the variables in the three equations/principle of conservation of energy (1) $(m_{\rm w} \times l_{\rm w}) + (m_{\rm w} \times c_{\rm w} \times \Delta \theta_{\rm w}) = (m_{\rm m} \times c_{\rm m} \times \Delta \theta_{\rm m})$ rearrangement (1) $m_{\rm m} = \frac{(m_{\rm w} \times l_{\rm w}) + (m_{\rm w} \times c_{\rm w} \times \Delta \theta_{\rm w})}{(c_{\rm m} \times \Delta \theta_{\rm m})}$	allow in words or with suitable alternative subscripts temperature changes and I_w must be correct	
	substitution of correctly calculated quantities (1) $= \left(\frac{\left(\left(\frac{25}{1000} \right) \times 2260000 \right) + \left(\left(\frac{25}{1000} \right) \times 4200 \times 35 \right)}{3840 \times 60} \right)$	allow maximum of 3 marks for calculations that omit the energy from cooling of water	
	evaluation (1) 0.26(kg)		(4)

Question	Answer	Mark
number		
(iii)	 Any two of the following reasons: more steam must condense and transfer the energy that is dissipated to the jug during the process (1) more steam must condense and transfer the energy that is dissipated to the surroundings during the process (1) more steam must condense and transfer the energy needed to cause the milk to froth (1) more steam must condense to replace any steam that might leave the milk without condensing (1) 	(2)

Q12.

Question number	n Answer	Additional guidance	Mark
(i)	Recall GPE = $m \times g \times \Delta h$ (1)		(3)
	Substitution = $400 \times 9.8 \times 1.5$ (1)		
	Evaluation = 5900 (J) (1) (which is nearly 6000 J)	accept 5880 (J)	

Question number	Answer	Additional guidance	Mark
(ii)	An explanation that combines identification – knowledge (1 mark) and reasoning (1 mark)		(2)
	energy is dissipated/scattered (1)	energy from a loss of ball's PE / its gain in KE	
	into the surroundings (1)	ends up as (kinetic) energy of molecules (of ball / wall / air)	

Question number	Answer		Mark	
(iii)	В	velocity		(1)

Q13.

Question number	Answer	Additional guidance	Mark
	An answer that combines points of interpretation/evaluation to provide a logical description: efficiency increases (at first) (1) to maximum efficiency (for mass	e.g. decreases for	(2)
	of about 25 kg) (1)	larger masses	

Q14.

Question number	Answer	Additional guidance	Mark
	An answer that combines the following points of application of knowledge and understanding to provide a logical description: work is done against friction (1) energy is stored in another specified way (1)	ignore references to friction as energy store acceptable stores are: KE of water thermal energy of water thermal energy of air (G)PE of water	(2)

Q15.

Question Number:	Answer	Additional Guidance	Mark
	a description to include: kinetic energy (store) (of cyclist and /or bicycle) decreases / is transferred into(1)	KE for kinetic energy	(2) AO 1 1
	thermal energy (store) (of brakes / surroundings) increases (1)	allow heat for thermal allow brakes get hotter ignore sound energy accept kinetic (energy) to heat (energy) for 2 marks in this context	

Q16.

Question	Answer	Acceptable answers	Mark
Number			
(a)	A transverse and electromagnetic		(1)

Question Number	Answer		Acceptable answers	Mark
(b)			award full marks for correct answer with no working	(3)
	Evaluation 171.5	(1)	34.3 x 5	
	Substitution (34.3/171.5) x 100 ((1)	[34.3 /(34.3 x 5)] x 100 [34.3 /(34.3 x 5)] [34.3 /171.5]	
	Evaluation 20 (%) (1)		Allow 0.2 or 1/5 for 3 marks	

Question Number	Answer	Acceptable answers	Mark
(c)	rate of {energy/heat} (from the Sun){absorbed/taken in} (1) equals rate of {energy/heat} {radiated/emitted/given out}(1)	Allow 'energy in = energy out' for 1 mark 'power in = power out' for 2 marks	(2)

Question	Indicative content	Mark
Question number	Answers will be credited according to the candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all of the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. A03 (6 marks) the varying height shows a varying gravitational potential energy(gpe) during the swings when the height is a maximum the gpe is a maximum-at top of swing when the height is a minimum the gpe is a minimum-at bottom of swing kinetic energy varies during swing kinetic energy maximum at bottom of swing kinetic energy minimum at top of swing (continuous) interchange of KE and gpe	Mark (6)
	 total amount of energy is constant during one swing over a number of swings max KE and max PE decreases energy is dissipated/'lost' to surroundings because of air resistance / friction 	
	· amplitude/size of swings decrease (as energy 'lost' to surroundings) ignore references to momentum	

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 Deconstructs scientific information but understanding and connections are flawed. An unbalanced or incomplete argument that provides limited synthesis of understanding.
		 Judgements are supported by limited evidence. (AO3)
Level 2	3-4	 Deconstructs scientific information and provides some logical connections between scientific concepts. An imbalanced argument that synthesises mostly relevant understanding, but not entirely coherently. Judgements are supported by evidence
Level 3	5-6	occasionally. (AO3) Deconstructs scientific information and provide logical connections between scientific concepts throughout. A balanced, well-developed argument that synthesises relevant understanding coherently.
		 Judgements are supported by evidence throughout. (AO3)

Q18.

Question Number:	Answer	Additional guidance	Mark
(i)	0.9 (k N) (1)	accept .9 or 0.90	(2) AO 3 2a
	up / upwards / ascending (1)	north N	AO 3 2b
		 	

Question Number:	Answer	Additional guidance	Mark
	400N	judge length and direction by eye construction lines need not be shown magnitude need not be stated allow missing arrowhead if direction and length are correct	(1) AO 3 2b
		reject answers which have any additional vectors drawn	

Question Number:	Answer	Additional Guidance	Mark
(iii)	recall and substitution (1)		(2) AO 2 1
	GPE = 750 x 10 x 1300	no POT error (could have missed out g)	
	evaluation (1)		
	(energy =) 9 800 000 (J)	allow answers in standard form 9.8 x 10 ⁶	
		allow answers that round to 9 800 000 e.g. 9 750 000 J	
		allow 9800 kJ or 9.8MJ	
		allow 9 555 000 J	
		allow negative values	
		award full marks for correct answer without working	

Q19.

Question number	Answer	Additional guidance	Mark
(i)	D R and S A, B and C are incorrect because the difference in vertical positions are all less than that shown by R and S		(1) AO1

Question number	Answer	Additional guidance	Mark
(ii)	recall (1) work done = force x distance substitution and evaluation (1) (work done =) 14,000 (J)	(work done) = 700 x 20	(2) AO1
		award full marks for the correct answer without working	

Question number	Answer	Additional guidance	Mark
(iii)	substitution (1)		(2) AO2
	11250 = m x 10 x 15		
	rearrangement and evaluation (1)		
	(mass=) 75 (kg)		
		award full marks for the correct answer without working.	
		if no other marks scored then award 1 mark for answers of 0.013 (substitution mark using h = 15)	

Question number	Answer	Additional guidance	Mark
(iv)	An explanation linking		(2) AO1
	some work is done to overcome friction/air resistance (1)	allow energy is lost	
	energy is dissipated /transferred to the environment (1)	thermal energy	

Question number	Answer	Additional guidance	Mark
(v)	C increase the efficiency of the cyclist and bicycle		(1) AO1
	A is incorrect because lubrication has no effect on work done against gravity B is incorrect because lubrication will increase efficiency D is incorrect because the overall energy transfer will not increase		

Q20.

Question Number	Answer	Mark
	The only correct answer is B : work done= force × distance moved in direction of force	(1)
	A is incorrect because the equation would be dimensionally inconsistent	
	C is incorrect because the equation would be dimensionally inconsistent	
	D is incorrect because the direction of the distance moved is incorrect	

Question Number	Answer		Acceptable answers	Mark
(a)(i)	C - power			(1)
Question Number	Answer		Acceptable answers	Mark
(a)(ii)	energy	work	Must be in correct order	(1)

Question Number	Answer	Acceptable answers	Mark
a(iii)	Substitution 50 x 4 (1)		
	Evaluation 200 (kg m/s) (1)	Allow full marks for correct answer with no working shown	(2)

Question Number	Answer		Acceptable answers	Mark
a(iv)	Substitution 450 / 1.5	(1)		
	Evaluation 300 (N)	(1)	Allow full marks for correct answer with no working shown Allow (1) for 167 (N) obtained by 450-200 / 1.5	(2)

Question Number	Answer	Acceptable answers	Mark
(a)(v)	An explanation to include	ignore any named examples	
	(quantity has) a size and a direction		(1)

Question Number	Answer	Acceptable answers	Mark
Number (b)	An explanation which uses conservation of momentum to link three from Mother and daughter have different mass (1) Momentum is conserved / is zero to start with (1) Both have same size momentum (after the push) (1)	An explanation based on Newton's laws and linking three from Each have a different mass (1) Each experience the same size force / action and reaction are equal (1) Each experiences a different	
	so speed of the daughter is greater than that of the mother (1)	acceleration (1) so speed of the daughter is greater than that of the mother (1)	(3)

Question Number:	Answer	Additional Guidance	Mark
(i)	recall efficiency equation (1) $efficiency = \frac{useful \ output}{input}$	efficiency = $\frac{\text{power output}}{\text{power input}}$	(4) AO 1 1 AO 2 1
	rearrangement (1)		
	output energy = 0.70 x 6500	4550 (kJ) seen scores 2 marks (from 0.7 x 6500 (kJ))	
	recall power equation (1)		
	$power = \frac{energy}{time}$	<u>4550</u> 60	
		accept ecf from output energy	
	evaluation (1)		
	(power =) 76 (kW)	accept values that round up to 76 (kW) e.g. 75.8	
		award full marks for correct answer without working	

Question Number:	Answer	Additional Guidance	Mark
(ii)	an explanation linking:		(2) AO 1 1
	(useful) output energy is less than input energy (1)	input energy is greater than output energy	
		(only) 70% of the input energy is useful	
	some energy is transferred to less useful forms (1)	energy is dissipated / wasted / lost (to surroundings)	
		energy is lost / transferred as thermal / heat	
		30% is lost /dissipated / wasted / lost for 2 marks	

Question Number	Answer	Acceptable answers	Mark
(a)(i)	Α		(1)

Question Number	Answer	Acceptable answers	Mark
(a)(ii)	A description to include any two of	Ignore energy changes resulting from impact with sand	(2)
	Gravitational / potential energy reduces (1)	GPE reduces	
	kinetic energy increases (1)	KE increases	
	total energy remains constant (1)	Allow GPE is transferred to KE for 2 mark	

Question Number	Answer	Acceptable answers	Mark
(b)	• (work is done) displacing the sand (1) with EITHER • (as) kinetic energy of the ball(s) has been transferred (1)	sand moving/ pushing/ blowing upwards OWTTE or ball sinking into sand	(2)
	by the force between the ball and the sand (1)		

Question Number	Answer	Acceptable answers	Mark
(c)(i)	transposition mass = momentum / velocity (1)	Subst. and transform. either order 1 mark only can be scored for correct substitution after incorrect transposition.	(3)
	substitution mass = 0.46 / 6.2 (1) evaluation 0.074 (kg) / 74g (1)	Give full marks for correct answer with no working. Answers that round to 0.074 (kg) 0.07 (kg)	

Question Number	Answer	Acceptable answers	Mark
(c)(ii)	substitution (impact) force = 0.46 / 0.17 (1)	Give full marks for correct answer with no working.	(2)
	evaluation 2.7 (N) (1)	Ignore power of ten error until evaluation	
		Answers which round to 2.7	
		Allow ECF if candidate has used mass from part (i) in F=m(v-u) / T	
		$F = \frac{6.2 - 0}{0.17} \times 0.074 (1)$	
		= 2.7 (N) (1)	