Mark Scheme

Q1.

Question number	Answer	Mark
(a)	Idea of a direct reading (without calculation)	(1)

Question number	Answer	
(b)	If student B drops the ruler, they are not really measuring their own reaction time as they know when ruler has been dropped	(1)

Question number	Answer	Additional guidance	Mark
(c)(i)	calculating the mean (1) 18.36 rounding to 2 s.f. (1) $18(\mathrm{~cm})$	award full marks for correct numerical answer without working	

Question number	Answer	Additional guidance	Mark
(c)(ii)	Rearrangement (1) $t=\sqrt{\frac{\text { distance }}{500}}$ Substitution and answer (1) time $=0.17$ (s)	award full marks for correct numerical answer without working allow answers which round to 0.17, e.g. 0.1673	(2)

Question number	Answer	Additional guidance	Mark
(d)	An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): - 25.5 is an anomalous result (1) (because) it is much further away from the mean than the other results (1)	ignore 19	

Question number	Answer	Mark
(e)	Take more readings (1) Idea that a third student should also measure the reaction time (1)	(2)

Question number	Answer	Additional guidance	Mark
(f)	An answer that combines the following points to provide a logical description of the plan/method/experiment:	- using a larger group of students/large population of students (1) and measure how their reaction time varies with age/height (1)	allow any suitable variable

Q2.

Question number	Answer	Additional guidance	Mark
	$16.0(\mathrm{~m} / \mathrm{s})$ read from graph (1) Substitution (1) (distance travelled =) 16×0.5 Answer (1) $8.0(\mathrm{~m})(1)$	award full marks for correct numerical answer without working ecf for substitution and answer using wrong speed value	(3)

Q3.

Question number	Answer	Additional guidance	Mark
(i)	 any correct points from line Q e.g. substitution (1) mass $=2 / 2$ evaluation (1) 1 (kg)	Accept answers in the range 1 to 1.05 (kg) full marks will be awarded for correct numerical answer without working	(2)

Question number	Answer	Additional guidance	Mark
(ii)	an answer that combines points of interpretation to provide a logical description: (trolley/it) has the smallest acceleration for the largest force (and) $m=F / a$	(2)	
	(2)		

Q4.

Question number	Answer	Additional guidance	Mark
(i)	substitution and conversion (1) $\mathrm{v}=0.05 / 0.08$ evaluation (1) $\mathrm{v}=0.63(\mathrm{~m} / \mathrm{s})$	full marks will be awarded for correct numerical answer without working	(2)

Question number	Answer	Additional guidance	Mark
(ii)	$\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t} \quad$ (1)		(1)

Question number	Answer	Additional guidance	Mark
(iii)	substitution (1) $(1.1-0.72) / 0.53$ evaluation (1) $0.72 \mathrm{~m} / \mathrm{s}^{2}$	(2) full marks will be awarded for correct numerical answer without working	

Q5.

Question number	Answer	Additional guidance	Mark
	substitution (1) $(\mathrm{a}=) \frac{12-2(.0)}{4(.0)}$ evaluation (1) $2.5\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	(2) AO2	
		award full marks for correct answer without working.	

Q6.

Question number	Answer	Additional guidance	Mark
	substitution (1)	(average speed =) $\frac{1200}{80}$	(2)
	evaluation (1) (m/s) award full marks for the correct answer without working		

Q7.

Question Number	Answer	Additional guidance	Mark
	substitution (1) $\frac{80(2)\left(-0^{2}\right)}{2 \times 4}$ evaluation (1) $800(\mathrm{~m})$	allow 1 mark for seeing $\frac{80}{8}$	(2)
ignore any minus signs			
award full marks for the correct answer			
without working			

Q8.

Question Number	Answer	Additional guidance	Mark
	substitution (1) 1800×1.2 evaluation (1) $2200(\mathrm{~N})$	accept $1800 \mathrm{~kg} \times 1.2 \mathrm{~m} / \mathrm{s}^{2}$ reject 1800×1.2^{2}	(2)
$2160(\mathrm{~N})$			
award full marks for the correct answer			
without working			
allow 1 mark total for 2200 OR 2160 with			
any other power of ten			

Q9.

Question number	Answer	Additional guidance	Mark
	rearrangement (1) $m=\frac{f}{a}$ substitution and conversion (1) $m=\frac{1870}{1.83}$ answer and rounding to 3 s.f. (1) $1020(\mathrm{~kg})$	maximum 2 marks if kN not converted to N award full marks for correct numerical answer without working	(3)

Q10.

Question number	Answer	Additional guidance	Mark
	$v=u+a t$ rearrangement of $\frac{(v-u)}{t}=a(1)$ $v=0+1.83 \times 16$ $v=0$ (itution (1) award full marks for correct numerical answer without working answer (1) $29.3(\mathrm{~m} / \mathrm{s})$	(3)	

Q11.

Question number	Answer	Additional guidance	Mark
	substitution (1)		(2) AO2
	$\left(\mathrm{v}^{2}-0=\right) 2 \times 10 \times 1.5$	accept numbers that round to 5.5 e.g.	
	evaluation (1)	$5.5(\mathrm{~m} / \mathrm{s})$	5.477 $30(\mathrm{~m} / \mathrm{s})$ gains 1 mark for correct substitution but no square root taken
		award full marks for correct answer without working.	

Q12.

Question number	Answer	Additional guidance	Mark
(i)	substitution Time $=37 / 25(1)$	Evaluation (1) $=1.5(\mathrm{~s})$	Allow 1.48 (s) full marks will be awarded for correct numerical answer without working

Question number	Answer	Additional guidance	Mark
(ii)	substitution K.E. $=0.5 \times 1300 \times 20^{2}(1)$ evaluation (1) $=260,000 \mathrm{~J}$	(2)	
260 kJ			
full marks will be			
awarded for correct			
numerical answer			
without working			

Question number	Answer	Mark
(i)	A	(1)

Question number	Answer	Additional guidance	Mark
(ii)	Obtain readings from graph (1) Substitution (1) 16 2.0 Answer (1) $8.0\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ award full marks for correct numerical answer without working		

Q14.

	Answer	Acceptable answers	Mark
(i)	D the same size as the driving force		(1)
(ii)	transposition: (1) fchange in) speed $=$ accelerationxtime	transposition and substitution can be in either order substitution mark can be scored when incorrectly transposed word/symbol equation is given	(3)
	substitution: (1)		
	speed $=12 \times 4$		
	evaluation: (1)		
$48(\mathrm{~m} / \mathrm{s})(1)$	Give full marks for correct answer no working		

Q15.

Question number	Answer	Mark
(i)	any value from 19 to 20 inclusive.	(1)

Question number	Answer	Additional guidance	Mark
(ii)	An explanation that combines identification via a judgment (2 marks) to reach a conclusion via justification/reasoning (1 mark): Idea that (approximately) equal incremental increases in speed cause equal incremental increases in thinking distance correct reference to figures in table	The last marking point can only be achieved if at least one of the other two marks is awarded	(3)
and therefore the student's conclusion is correct			

Q16.

Question number	Answer	Additional guidance	Mark
	A description including two from let the car roll down the slope from the same point on the slope (1) measure distance it travels (along horizontal surface) (1)	(2) AO1	
allow time it takes to stop change the surface/ use different surfaces (1)			

Q17.

Question number	Answer	Additional guidance	Mark
	A description to include: (1) measurement of (relevant) distance	one of distance down slope or distance along bench or length of toy car/card	(4)
use of speed $=\frac{\text { distance (1) }}{\text { time }}$	'record the distance the car travels and time it' scores 2 marks	For example: speed down slope $\times 2$ detail (1)	

Q18.

Question number	Indicative content	Mark
*	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO3 - graph starts at zero - graph increases to a maximum at 2 s - graph stays constant for 2.6 s - graph decreases to zero at 6 s - graph stays at zero after 6 s - graph decreases steeply until 5 s - graph decreases less steeply until 6 s - graph at zero between 6 and 7 s AO2 - velocity is zero at time zero - velocity increases/train accelerates until 2 s - velocity is constant for 2.6 s - velocity decreases/train decelerates until 6 s - deceleration changes at 5 s - acceleration is gradient of graph - velocity zero between 6 and 7 s	$\begin{aligned} & \hline \text { (6) } \\ & \text { AO2 } \\ & \text { AO3 } \end{aligned}$

Level	Mark	Descriptor
	0	- No awardable content
Level 1	1-2	- Interpretation and evaluation of the information attempted but will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of understanding. (AO3) - The description attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2)
Level 2	3-4	- Interpretation and evaluation of the information on both variables, synthesising mostly relevant understanding. (AO3) - The description is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2)
Level 3	5-6	- Interpretation and evaluation of the information, demonstrating throughout the skills of synthesising relevant understanding. (AO3) - The description is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2)

Q19.

Question Number	Answer	Additional guidance	Mark
	a description to include 3 points from: - measure a distance (at the bottom) / use mark(er)s (certain distance apart) (1) - starting timer (at first mark(er)) (1) - stopping timer (at $2^{\text {nd }}$ mark(er)) OR measures a time (interval) (1) - $\quad($ use speed $)=$ distance/time (1)	use a light gate (or equivalent sensors idea) not over whole slope for this mark point use of video / (speed) camera /interrupts the light beam accept any time measured for this mp including data logger OR timer / stopwatch	(3) $\text { AO } 22$

Question number	Answer	Additional guidance	Mark
(i)	A plan including four of the following measurement of appropriate distance (1) measurement of appropriate time (1) use of speed = distance (1)	(4) AO3	
detail (1) e.g. repeat and average, use ruler/stop clock, mark a line near the top and bottom of liquid			

Question number	Answer	Additional guidance	Mark
(ii)	An explanation linking two from: add more lines (at equal distances)(1)	(2) use longer test tube / use different heights of liquid / use different sections of the liquid	
measure the time of fall for each distance (1)	compare the times (1) e.g. \{equal times =constant speed\}	\{shorter time $=$ acceleration\}	

Q21.

	Answer	Acceptable answers
	substitution into given equation (1)	
1.3×300000	Power of 10 error max 1 mark	Mark
		$3.9 \times 10^{5}(\mathrm{~km})$ 2 maluation (1) $390000(\mathrm{~km})$ with no working shown lgnore any unit given by candidate.

Q22.

Question number	Answer	Additional guidance	Mark	
(i)	$0.45(\mathrm{~s})$	(1)	Allow any value ≥ 0.4 and ≤ 0.5	(1)

Question number	Answer	Additional guidance	Mark
(ii)	An explanation that combines improvement of the experimental procedure (1 mark) and justification/reasoning which must be linked to the improvement (1 mark)	(2)	
	- take pictures more frequently (1) in order to determine exact time of the release. (1)	other responses may be acceptable	

Question number	Answer	Additional guidance	Mark
(iii)	Substitution (1) $\mathrm{F}=7.26 \times 20.6$ Evaluation (1) $150(\mathrm{~N})$ Accept $149.6(\mathrm{~N})$	(2)	
full marks will be			
awarded for			
correct numerical			
answer without			
working			

\hline\end{array}\right.\)
$\left.\begin{array}{|c|l|l|l|}\hline \begin{array}{c}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \begin{array}{l}\text { Additional } \\ \text { guidance }\end{array} & \text { Mark } \\ \hline \text { (iv) } & \begin{array}{l}\text { Rearrangement (1) } \\ \mathrm{v}=\mathrm{a} \times \mathrm{t}\end{array} & \begin{array}{l}\text { Substitution (1) } \\ \mathrm{v}=23 \times 0.48 \\ \text { Evaluation (1) } \\ 11(\mathrm{~m} / \mathrm{s})\end{array} & \begin{array}{l}\text { Accept } \\ 11.04 \mathrm{~m} / \mathrm{s}) \\ \text { full marks will be } \\ \text { awarded for } \\ \text { correct numerical } \\ \text { answer without } \\ \text { working }\end{array}\end{array}\right\}$

Question number	Indicative content	Mark
	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 strand 1 (6 marks) factors concerning driver - change in reaction time - tiredness - effect of drugs - type of footwear - how hard the driver presses the pedal effect of any of the above on stopping distance, - increased stopping distance - increased thinking distance - increased reaction time factors concerning car or road - mass / weight of car - speed of car - state of brakes - state of tyres - state of road effect of any of the above on stopping distance, e.g. - increased thinking/braking distance - increased stopping distance	(6)

Level	Mark	Descriptor
	0	- No rewardable material.
Level 1	1-2	- Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) - Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	- Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) - Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	- Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) - Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

SUMMARY, for guidance

Level	Mark	Additional Guidance	General additional quidance - the decision within levels e.g. - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	$1-2$	Additional guidance Elements of physics, i.e. isolated factor(s) about either car or driver	Possible candidate responses worn tyres / tired driver worn tyres and icy road
Level 2	$3-4$	Additional guidance Some understanding shown, i.e. either link between factor and effect or a driver factor and a car factor	Possible candidate responses worn tyres cause increased stopping distance. or worn tyres and tired driver
Level 3	$5-6$	Additional guidance Understanding is detailed and fully developed, i.e. link between factor and effect - both for driver AND for car	Possible candidate responses worn tyre causes increased stopping distance. and tired driver causes increased stopping distance

Q24.

	Answer	Additional guidance	Mark
(i)	an explanation linking two from: (wet road means) less / no friction (between tyres and road) (1)	accept reverse arguments throughout accept road more slippery / less grip accept idea of reduced visibility	(2) AO1
(wet weather means) increased stopping distance (1)	accept braking or thinking distance in this context	accept takes longer to slow down / stop ignore harder to brake	
(slower speed means) shorter braking / stopping distance (1)	(dry weather / slower speed) reduces possibility of skidding / sliding / idea of losing control / crashing (1)		

	Answer	Additional guidance	Mark
(ii)	convert either distance or time (1) $(31 \mathrm{~m}=) \frac{31}{1000}(\mathrm{~km})$ or 0.031 (km) OR $(1 \mathrm{~s}=) \frac{1}{3600}(\mathrm{~h})=\frac{1}{60 \times 60}(\mathrm{~h})$ or 0.00028 (h) evaluation (1) $(31 \mathrm{~m} / \mathrm{s}=) 110(\mathrm{~km} / \mathrm{h})$	$(130 \mathrm{~km}=) 130 \times 1000(\mathrm{~m})$ or $130000(\mathrm{~m})$ OR $(1 \mathrm{~h}=) 60 \times 60(\mathrm{~s})$ or 3600 (s) $(130 \mathrm{~km} / \mathrm{h}=) 36(.1)(\mathrm{m} / \mathrm{s})$ accept 111.6 or 112 (km/h) for 2 marks if no other marks awarded accept $1860 \mathrm{~m} / \mathrm{min}$ and $\underline{2167 \mathrm{~m} / \mathrm{min}}$ for 1 mark each award full marks for the correct answer without working	$\begin{aligned} & \hline(2) \\ & \mathrm{AO2} \end{aligned}$

	Answer	Additional guidance	Mark
(iii)	select and substitute into distance travelled = average speed \times time (1) $46=31 \times t$ rearrangement and evaluation (1) $\text { (t=) } 1.48(3)(\mathrm{s})$ evaluation given to 2 sf (1) $\text { (} \mathrm{t}=) 1.5(\mathrm{~s})$	$\begin{aligned} & 31=\frac{46}{t} \\ & (t=) \frac{46}{31} \end{aligned}$ award two marks for the correct evaluation without working any answer written to 2 sf independent mark	$\begin{aligned} & \hline(3) \\ & \text { AO2 } \end{aligned}$

Q25.

An explanation linking

- \{acceleration of sports is $2 x /$ time to reach $30 \mathrm{~m} / \mathrm{s}$ is $1 / 2$ \} that of family car / RA (1)
- mass of sports car LESS than $1 / 2$ that of family car or RA (1)

Acceptable answers
Attempt to use $\mathrm{f}=\mathrm{m} \times$ a scores one mark e.g. 4200 OR 3600 scores 1

Correct numerical comparison scores both marks e.g. 4200:3600 numerically or in words scores 2 marks

Q26.

	Answer	Additional guidance	Mark
(i)	$0.54(\mathrm{~s})$	allow any value from 0.53 and 0.55 inclusive	(1) AO3

	Answer	Additional guidance	Mark
(ii)	curve extended to $a=80^{\circ}$ (1)	judge generously	(2) AO3
0.45 (s) (1) allow range 0.42 to 0.48	award full marks for the correct answer without working.		

	Answer	Additional guidance	Mark
(iii)	mention/idea of reaction time (1)	human reaction time is about 0.2 seconds	(2) AO3
(reaction time) about the same			
as the times on the graph (1)			
(compared with) 0.4			
seconds on the graph			
ignore accuracy			
ignore "human error"			

\hline\end{array}\right.\)

Question Number	Answer	Additional guidance	Mark
	substitution (1) $(F=) 0.10 \times 2.0$ evaluation (1) 0.2(0) unit (1) N	100×2 (using $0.10 \mathrm{~kg}=100 \mathrm{~g}$) reject 0.10×2.0^{2} and the follow up evaluation (equation given should be used) correct answer without working gets 2 marks allow 1 mark total for 2 with any other power of ten, so that includes 200 for example separate unit mark newtons / Newtons accept lowercase ' n ' for the abbreviated unit accept $\mathrm{kg} \mathrm{ms}^{-2}$ accept $200 \mathrm{~g} \mathrm{~ms}^{-2}$ for 3 marks	(3) $\text { AO } 21$

Q28.

	Answer	Acceptable answers	Mark
(a)(i)	$8-0(\mathrm{~m} / \mathrm{s})$	8	(1)
(a)(ii)	substitution $8 / 5(1)$ evaluation (1) $1.6\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	ecf from (i) full marks for correct answer (or ecf) with no working shown.	
(a)(iii)	0		Nil $/$ nothing $/$ zero $/$ none (no mark for no response)

			Indicative Content
QWC		*(c)	an explanation linking some of the following poin compared to a car with just the driver, a fully loa - have a greater mass / be heavier - greater kinetic energy / momentum - experience the same braking force (wher applied) - require a greater braking force (than ava the same distance) - have a smaller acceleration / deceleratio - take a longer time to come to rest (from - travel greater distance in this time - needs to do more work with same amour - use of relevant equations such as $F=m e$ d - consequence of driver distractions
Level	0	No rewardable content	
1	1-2	- a limited exp fully loaded - in answer c limited scie - spelling, pu	using one idea from the indicative content eg avier. ates ideas using simple language and uses minology and grammar are used with limited accuracy
2	3-4	- a simple ex it is heavier - the answer and organis - spelling, pu	which links ideas from the indicative content eg takes a longer distance to stop cates ideas showing some evidence of clarity uses scientific terminology appropriately and grammar are used with some accuracy
3	5-6	- a detailed exp content e.g to stop. Thi communica terminology - spelling, pu	which links several ideas from the indicative ore momentum and so it will take a longer time that it will travel a further distance. The answer clearly and coherently uses a range of scientific ly and grammar are used with few errors

Q29.

Q30.

Question Number	Answer	Acceptable answers	Mark
(a)	D driving for a long time without taking a break		(1)

Question Number	Answer	Acceptable answers	Mark	
(b)(i)	substitution $1200 \times 8(.0)$	(1)	Give full marks for correct answer with no working.	(2)
evaluation				
$9600 ~(J) ~ O R ~$ (1)	$9.6 \times 10^{3}(\mathrm{~J})$	$9.6 \times$ any other power of $10=1$ mark		

Question Number	Answer	Acceptable answers	Mark
(b) (ii)	substitution $0.5 \times 1400 \times 25^{2}$ (1) evaluation of v squared $0.5 \times 1400 \times 625$ (1) evaluation 4.4×10^{5} (1) OR 440000	Give full marks for correct answer with no working. accept 625 seen anywhere for this mark e.g. 875000 gets 1 mark (forgot $1 / 2$) 437500 (J) $4.4 \times$ any other power of $10=2$ marks	(3)

Q31.

Question number	Answer	Additional guidance	Mark
(i)	D travelling more slowly	A is incorrect, more passengers would increase the stopping distance B is incorrect, worn tyres would increase the stopping distance C is incorrect, if the car needed new brakes this would increase the stopping distance	AO1

$\left.\begin{array}{|c|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \text { (ii) } & \begin{array}{l}\text { identification of horizontal line } \\ \text { as reaction time (1) }\end{array} & \begin{array}{l}\text { (2) } \\ \text { AO3 } \\ \text { evaluation (1) } \\ 0.6(s)\end{array} & \begin{array}{l}\text { award full marks for } \\ \text { correct answer } \\ \text { without working }\end{array} \\ 0.7 \text { scores 1 mark }\end{array}\right]$

Q32.

Question number	Answer	Mark
	C mass	$(\mathbf{1)}$

Q33.

Question number	Answer	Additional guidance	Mark
(i)	0.52		(1) AO3

Question number	Answer	Additional guidance	Mark
(ii)	addition and division (1)		(2) AO2 evaluation (1) $0.35(\mathrm{~m})$
		accept 0.345 (m) award full marks for correct answer without working. accept 0.38 for 2 marks (five results included in average	

Question number	Answer	Additional guidance	Mark
(iii)	Any one from	(1) accept 'higher slope/high slope	AO1
	add more books/blocks (1)		
push/pull the trolley (1)	accept means of reducing friction e.g. use lubricant		

Q34.

Question number	Answer	Mark
(i)	区 C $F=m \times a$	(1)
	A, B and D have incorrect mathematical operator	

Question number	Answer	Additional guidance	Mark
(ii)	140 (1)	no ecf from 2ai independent mark allow newton(s) n (1)	(2)
		do not allow Ns ns	

Q35.

Question Number	Answer	Mark
(i)	The only correct answer is C $\mathbf{2 0} \mathbf{~ m} / \mathbf{s}$	
A is not correct because $0.2 \mathrm{~m} / \mathrm{s}$ is too slow		
B is not correct because $2 \mathrm{~m} / \mathrm{s}$ is too slow		
D is not correct because $200 \mathrm{~m} / \mathrm{s}$ is too fast		

Question Number	Answer	Additional guidance	Mark
(ii)	NO PoT error recall (1) $(\Delta G P E)=m \times g \times \Delta \mathrm{h}$		
substitution (1) from wrong equation $(\Delta G P E=) 75 \times 10 \times 20$ evaluation (1) $15000(J)$	(3)		

Q36.

Question number	Answer	Additional guidance	Mark
	B force	A is incorrect, mass is a scalar quantity	C is incorrect, energy is a scalar quantity D is incorrect, distance is a scalar quantity

Q37.

Question number	Answer	Mark
	D	(1)

Q38.

Question number	Answer	Mark
	C reaction time	(1)

Q39.

Question number	Answer	Mark
	区 B force Options A, C and D are all scalars.	$\mathbf{(1)}$

Q40.

Question number	Answer	Additional guidance	Mark
	Any three improvements from: -suitable instrument to measure distance (1) using a greater distance (to reduce effect of reaction times) (1) suitable instrument to measure time (1) use of one student at the \{first/second\} lamp post to signal when to \{start/stop\} timing (1) two of three sets of students taking readings for the same car (1) allow tape measure, trundle wheel allow stop watch/clock or timing app. on phone		

Q41.

Question Number	Answer	Mark
(i)	all three correct (2) one or two correct (1)	(2)

Question Number	Answer			Additional guidance	Mark
(ii)	Q and S				in either order
	$\mathrm{Q} \quad$ (1)	(and)	S	(1)	maximum of 1 mark if 3 letters given
OR				no marks if 4 or more letters given	(2)
S	(1)	(and)	Q	(1)	

Question Number	Answer	Additional guidance	Mark
(iii)	substitution (1) (distance =) 30×100 evaluation (1) $3000(\mathrm{~m})$	for $1^{\text {st }} \mathrm{mp}$ accept 100×30 OR $(30 \times 50) \times 2$ award full marks for the correct answer without working allow 1 mark for EITHER 30×50	(2)
		OR 30×150	
		OR	
		30×250	

Q42.

Question Number	Answer	Mark
	weight / force (accept circle around weight if not contradicted on answer line)	AO 12

Q43.

(i)	B to the left \leftarrow		(1)
(ii)	A accelerating		(1)
(iii)	Substitution		
	625×10 (1) Evaluation $6250(\mathrm{~N})$ (1)	625×9.8	(2)

Q44.

	Answer	Acceptable answers	Mark
(a)	D		(1)

Total for question $=10$ marks

Q45.

Question Number	Answer	Acceptable answers	Mark
	\{steady/constant\} speed (at first) (1)	accept velocity for speed ignore as time increases distance travelled increases	(2)
(then) slows down	(then) slower/less speed/decelerates/negative acceleration		

Q46.

Question Number	Answer	Acceptable answers	Mark
(a)	stopwatch /stopclock (1)	(electronic) timer timing app (on 'phone) clock and watch on their own are insufficient	(2)
\{trundle/measuring\} wheel/measuring tape or tape measure (1) any suitable length measuring device e.g. accept metre \{rule(r)/stick\} ignore speedometer/speed camera/radar	but ruler on its own is insufficient Answers may be in either order		

Question Number	Answer	Acceptable answers	Mark
(b)(i)	white (car)	(1) Allow the use of other columns that identify correct car e.g. $5.6($ s $)$	(1)

Question Number	Answer	Acceptable answers	Mark
(b)(ii)	substitution $80 \div 4.3$ evaluation $19(\mathrm{~m} / \mathrm{s})$ Throughout the paper do not penalise answers to many places of decimal e.g. here 18.604651 gets both marks	Allow full marks for correct answer with no working seen.	(2) ignore 18 and 18.0 as incorrect rounding accept any power of 10 error for 1 mark

Question Number	Answer	Acceptable answers	Mark
(b) (iii)	40 (miles per hour) (1)	accept answers in range	
		ecf from b(ii) multiply bii by 29.222 range $+/-$ 2.0	(1)

Q47.

Question Number	Answer	Mark
	B $1.0 \mathrm{~m} / \mathrm{s} \quad$ The only correct answer is B crawling pace C $10 \mathrm{~m} / \mathrm{s}$ is incorrect, being an Olympic sprinter's pace, much too fast for 'walking' D $100 \mathrm{~m} / \mathrm{s}$ is incorrect, being a very fast sport's car's pace	(1)

Q48.

	Answer
	substitution
$F=1200 \times 0.8$	

	(1)			
evaluation				
$960(N)$	(1)	$	$	
:---				

Q49.

Question number	Answer	Additional guidance	Mark
(i)	acceleration = change in velocity		
time (taken)	$\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}} \quad \mathrm{a}=\frac{\Delta \mathrm{v}}{\mathrm{t}} \quad \frac{\mathrm{v}}{\mathrm{t}}$	(1)	
allow correct			
rearrangements			
seen here or in bii			

Question number	Answer	Additional guidance	Mark
(ii)	$\begin{aligned} & \text { substitution (1) } \\ & \frac{20-2}{12} \\ & \text { evaluation (1) } \\ & 1.5\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$	$-1.5\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ award full marks (1 in bi and 2 in bii) for the correct answer without working, award 1 mark if 20-2 or 18 or $2-20$ is seen and no other marks are scored If (incorrectly) $\mathrm{a}=\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{\mathrm{t}}$ given in 3bi $a=\frac{20^{2}-2^{2}}{12}$ OR = 33 scores 1 mark	(2)

Q50.

Question number	Answer	Additional guidance	Mark		
	any two from: measure \{distance / length of pace\} (1) use marks on the track (1) use an electronic timer (1) stand midway between the posts/stand closer to a post (1)	Suitable measuring device including trundle wheel / tape/ GPS	(2)		
idea of reducing					
systematic error					
such as parallax				\quad	light gate(s)
:---					
distance used or measured (1)					
use 2 people in the timing (1)	\quad	Do NOT credit			
:---					
repeats	\(\quad\left\{\begin{array}{l} 				

\hline\end{array}\right.\)

Q51.

Quest Numb		Indicative Content	Mark
QWC	*	An explanation including some of the following points: - Statement of what is meant by stopping distance Factors affecting driver - factors affecting driver's thinking distance/reaction time Factors dependent on the car - factors affecting braking distance e.g. tyre tread, condition of brakes - cars may be carrying different loads - cars may have different masses External factors - road surface - weather - uphill / downhill Use of data - calculation of thinking, braking and or stopping distances for average driver - calculation of thinking, braking and or stopping distances for driver A - calculation of thinking, braking and or stopping distances for driver B	(6)

Level	0	No rewardable content
1	1-2	- a limited explanation of the differences using one fact OR one piece of data from the chart OR factor(s) affecting thinking/braking distance. e.g. A has a longer thinking distance $O R B$ is a longer braking distance OR thinking distance can be affected by a driver using their phone - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy
2	3-4	a simple explanation, giving more than one fact using data from the chart about either car OR at least one piece of data about each OR using one piece of data from the chart about one car AND at least one factor affecting thinking/braking distance OR a statement linking data from the chart to the cause for one car but nothing correct about the other car e.g. A has a braking distance of (about) 33 m , its thinking distance is longer than an average car. OR B has a longer stopping distance. B's reaction time is faster than the Highway code. OR B has a very short thinking time. Car B's brakes may be worn out OR Driver A may have drunk alcohol making his reaction time slower. Car B has better brakes (NB $2^{\text {nd }}$ sentence is incorrect) - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy
3	5-6	- a detailed explanation linking data from the chart to the cause for one car AND at least one statement about the other OR two statements linking data from the chart to the cause for one car e.g. B has a braking distance of (about) 60 m . This means B might be on a wet road. A has a longer thinking distance. OR B has a shorter thinking distance than A. A has a longer thinking distance compared to the average (in highway code). He may be a drink driver. - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors

Q52.

Question Number	Answer	Additional guidance	Mark
(i)	(metre) rule(r) (1)	accept measuring tape/stick tape measure light gate	(1)

Question Number	Answer	Additional guidance Mark	
(ii)	A description that combines the following points to produce a logical method: hang/attach/add/put/increase \{masses / weights\} on/to (the end of) the string (over the pulley wheel) OR apply a force to the trolley/string (by a) pull / push / rubber band (1) OR putting trolley on a slope (1) allow the trolley to run down (1)	accept on/at/from the pulley wheel 'pull the string' OR push the trolley scores 2 marks slanting the bench (let) gravity pull the trolley	(2)

Question Number	Answer	Additional guidance	Mark
(iii)	Any one from: speed (at the start/end of the run) (1)	(different/additional) speed/velocity	

Q53.

Question number	Indicative content * Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO2 - fuel forms a store of chemical (potential) energy chemical energy is transferred to kinetic energy and thermal energy when the car moves kinetic energy transferred to thermal energy as the car slows down AO3 during X, kinetic energy increases as the car's speed increases/car accelerates and the increase in kinetic energy is provided by the chemical energy store during all three sections, work is done against frictional forces in the moving parts of the car and against the drag from the air during Y, kinetic energy stays constant when the car moves at constant speed but energy is still transferred to thermal energy during Z, kinetic energy decreases as the car slows down	Mark

Level	Mark	Descriptor
	0	No awardable content.
1	1-2	- Interpretation and evaluation of the information attempted but will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of understanding. (AO3) - The description attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2)
2	3-4	- Interpretation and evaluation of the information on both variables, synthesising mostly relevant understanding. (AO3) - The description is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2)

3	$5-6$	-Interpretation and evaluation of the information, demonstrating throughout the skills of synthesising relevant understanding. (AO3) Une description is supported throughout by linkage and The application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2)

Q54.

Question number	Answer	Additional guidance	Mark
	distance = area under graph (1)	attempt to find area seen on graph	(3)
	$52(.5)(\mathrm{m})(1)$	correct area(s) identified including calculation	$53(\mathrm{~m})$ allow 7 $\times 15(1)$ mark only or 105 for 1 award full marks for the correct answer with no working

Q55.

Question Number	Answer	Additional guidance	Mark
	• direction (1)	answers only acceptable in given order	(2) AO 21
	• size (1)	or magnitude	

Q56.

	Answer	Acceptable answers	Mark
(i)	$12(\mathrm{~m} / \mathrm{s})$ (1)	Range from $11(\mathrm{~m} / \mathrm{s})$ to 14 $(\mathrm{~m} / \mathrm{s})$	(1)
(ii)	Substitution (1)	20	(2)
	$20-0$	5	Full marks for correct answer with no

	$\begin{align*} & \text { evaluation } \tag{1}\\ & 4\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{align*}$	working Allow answers between 3.6 and 4.7 for 2 marks to reflect readings taken from the graph	
(iii)	- velocity/ speed (measured in) m / s (1) - divided by time in s (1)	velocity/ speed (measured in) ms^{-1} acceleration is rate of change of velocity m/s/s m per s per s [accept per for divide] do not accept m / s times time	(2)
(iv)	at constant vel - distance $=60(\mathrm{~m})(1)$ slowing down - distance $=1 / 2 \times 2 \times 20$ (1) - = 20 (m) (1)	correct answer scores 2 marks	(3)

Q57.

	Answer	Acceptable answers	Mark
	D		
			(1)

Q58.

	Answer	Acceptable answers	Mark
(i)	$8-0(\mathrm{~m} / \mathrm{s})$	8	(1)
(ii)	substitution $8 / 5(1)$ evaluation (1) $1.6\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	ecf from (i) full marks for correct answer (or ecf) with no working shown.	
(iii)	0	Nil / nothing / zero / none (no mark for no response)	(1)

