

HEAD BREAKING QUESTIONS

Things that make you go...what?

A power pylon has 33 Kv passing through alow resistance wire of $6 \mathrm{~K} \Omega$. The wire is 149 m long and reaches a temperature of $32^{\circ} \mathrm{C}$. Calculate the power lost in the wires during transmission.

$$
\begin{array}{ll}
V=33 \mathrm{kV}=33,000 \mathrm{~V} & V=I \times R \\
R=6 \mathrm{k} \mathrm{\Omega}=6000 \Omega & V / R=I \\
P=P & 33,000 / 6,000=I \\
& 5.5 A=I \\
& P=I^{2} \nsim R \\
& P=5.5^{2} \times 6000 \\
& P=181,500 \mathrm{~W}
\end{array}
$$

Pylons are 95\% efficient. How much time would it take to transfer 1.5MJ

$$
\begin{array}{ll}
P=3,448.5 \mathrm{~kW}=3,448,500 \mathrm{~W} & P=E / t \\
E=1.5 \mathrm{Mj}_{j}=1,500,000 \mathrm{~J} & t=E / P \\
t=t & t=1,500,000 / 3,448,500 \\
& T=0.438
\end{array}
$$

A toaster needs 64.12kJ to toast bread. It is plugged into the mains, and the heating element has a resistance of $0.076 \mathrm{k} \Omega$. How much time would it take to toast a slice of bread.

$$
\begin{array}{ll}
E=64.12 \mathrm{~kJ}=64,120 J & V=I \times R \\
V=230 \mathrm{~V} & V / R=I \\
R=0.076 \mathrm{k} \Omega=76 \Omega & 230 / 76=I \\
t=t & 3.02 \mathrm{~A}=I \\
I=3.02 \mathrm{~A} & E=V x I \times t \\
& E /(V x I)=t \\
& 64120 /(230 \times 3.02)=t \\
& 92.318=t \\
& 92.31 / 60=1.53 \mathrm{~min}
\end{array}
$$

On Planet Steve, an object has 2.6 MJ of KEwas dropped from 1.3 km . Calculate the mass of the object.

KE / GPE $=2.6 \mathrm{MJ}=2,600,000 \mathrm{~J}$
$\Delta h=1.3 \mathrm{~km}=1300 \mathrm{~m}$
For $g=2000 \mathrm{~N}(\mathrm{~N} / \mathrm{kg})$

$$
\begin{aligned}
& E=F \times d \\
& E / d=F \\
& 2,600,000 / 1300=F \\
& 2000 N=F \\
& \text { GPE }=m \times g \times \Delta h \\
& G P E /(g \times \Delta h)=m \\
& 2,600,000 /(2000 \times 1300)=m \\
& 1 K g=m
\end{aligned}
$$

\qquad

AGenerator has an efficiency of 32% and produces $1.8 \mathrm{~kJ} / \mathrm{s}$. What is the total amount of energy being transferred tothe generator?

Eff. $=0.32$
Use. $=1.8 \mathrm{~kJ} / \mathrm{s}=1800 \mathrm{~W}$
Tot. $=$ Tot.

$$
\begin{aligned}
& \text { Eff. }=\text { Use. } / \text { Tot. } \\
& \text { Tot. }=\text { Use. } / \text { Eff. } \\
& \text { Tot. }=1800 / 0.32 \\
& \text { Tot. }=5625 \mathrm{~W} \text { or } 5625 \mathrm{~J} / \mathrm{s}
\end{aligned}
$$

Tot. = Tot.
14% of the energy from the water is transferred in turbines. Deduce how much energy is in the flowing stream.

$$
\begin{array}{ll}
\text { Eff. }=0.14 & \text { Eff. }=\text { Use. / Tot. } \\
\text { Use. }=5625 \mathrm{~J} & \text { Tot. }=\text { Use. / Eff. } \\
\text { Tot. }=\text { Tot. } & \text { Tot. }=5635 / 0.14 \\
& \text { Tot. }=40,178.57
\end{array}
$$

40.18
kJ

The Dam is 14 m high and the water is $14^{\circ} \mathrm{C}$. Each particle of water has an internal energy store of 134.5 pJ and oscillates at a frequency of 13 GHz . Calculate the mass of the water flowing through the dam.
$\Delta h=14 \mathrm{~m}$
$m=m$
$g=10 \mathrm{~N} / \mathrm{kg}$
$G P E=40.18 \mathrm{~kJ}=40,180 \mathrm{~J}$
$G P E=m x g x \Delta h$
GPE $/(g \times \Delta h)=m$
$40,180 /(10 \times 14)=m$
$287 \mathrm{Kg}=\mathrm{m}$

Calculate the velocity of the water through the HEPstations.

$$
\begin{aligned}
& m=287 \mathrm{~kg} \\
& K E=40.18 \mathrm{~kJ}=40,180 \mathrm{~J} \\
& v=v
\end{aligned}
$$

State whether these are series orparallel circuits. Explain your answer.
A : The power pack is set at 12 V . There are two bulbs and 2 ammeters. One bulb has a voltage of 3 V and a current of 1.2A.

The bulb has less voltage than total voltage Must be in series because in parallel both bulbs would have 12 V

B: The total voltage of this circuit is 9 V and the total current is 3 A . One bulb, when measured with an ohmmeter has a resistance of 2Ω. There are no smaller resistors than thisone.

Resistance $=$ voltage $/$ current
 Resistance $=9 \mathrm{~V} / 3 \mathrm{~A}$
 Resistance $=3 \Omega$
 Total resistance is more than 2Ω so must be in series.

C : The voltage over abulb is 6 V and the resistance is 0.51 A . the voltage of an immersion heater is 14 V and the resistance is 1.19Ω.

Bulb
$V / R=I$
$6 \mathrm{~V} / 0.51 \Omega=I$
Heater
$11.76 \mathrm{~A}=\mathrm{I}$
$V / R=I$
$14 \mathrm{~V} / 1.19 \Omega=I$
$11.76 \mathrm{~A}=\mathrm{I}$

An old generator produces $21 \mathrm{Kj} / \mathrm{min}$ of useful energy with every litre of fuel used. Each litre of diesel contains $15,757 \mathrm{~J}$ of chemical energy. What is the efficiency when the generator is filled with 3.3 L of fuel and runs out in 2.5 mins ?
Must be in series as the current is the same.
$P=21 \mathrm{~kJ} / \mathrm{min}=0.35 \mathrm{~kW}=350 \mathrm{~W}$ per lire
3.3 L fuel $=51,998.1 \mathrm{Kj} / 2.5 \mathrm{mins}=346,653.3 \mathrm{~W}$

Use. $=350 \mathrm{~W}$
Tot. $=346,653.3 \mathrm{~W}$
Eff. =Use. / Tot.
Eff. = Eff.

Eff. $=350 / 346,653.3$
Eff. $=0.001$

\qquad \%

After lubrication with $3.5 \% \mathrm{~m} / \mathrm{vmmol}$ silica lubricant, it is no 20% efficient. Calculate the useful energy output.

Eff. $=0.2$
Use. $=$ Use.
Tot. $=346,653.3 \mathrm{~W}$

$$
\begin{aligned}
& \text { Eff. }=\text { Use. / Tot. } \\
& \text { Use. }=\text { Tot. x Eff. } \\
& \text { Use. }=346,653.3 \times 0.2 \\
& \text { Use. }=69,330 \mathrm{~W} \quad 69,330
\end{aligned}
$$ high did the rocketreach?

$$
\begin{aligned}
& v=450 \mathrm{~m} / \mathrm{s} \\
& m=8 T+2.7 T=10.7 T=10,700 \mathrm{~kg} \\
& \Delta h=\Delta h \\
& K E=0.5 \times m \times v^{2} \\
& K E=0.5 \times 10,700, \times 450^{2} \\
& K E=1,083,375,000 J \\
& G P E=m \times g \times \Delta h \\
& K E=m \times g \times \Delta h \\
& K E /(m \times g)=\Delta h \\
& 1,083,375,000 /(10,700 \times 10)=\Delta h \\
& 10,125 \mathrm{~m}=\Delta h
\end{aligned}
$$

What velocity would the rocket have to reach to achieve low earth orbit at 114 km

```
\(v=450 \mathrm{~m} / \mathrm{s}\)
\(m=10,700 \mathrm{~kg}\)
\(g=10 \mathrm{~N} / \mathrm{kg}\)
\(\Delta h=114 \mathrm{Km}=114,000 \mathrm{~m}\)
```

$G P E=K E$
$m x g x \Delta h=0.5 x m x v^{2}$

$$
\sqrt{\frac{m \times g x \Delta h}{0.5 \times m}}=v
$$

$$
\sqrt{\frac{10,700 \times 10 \times 114,000}{0.5 \times 10,700}}=v
$$

$$
1,509.96 \mathrm{~m} / \mathrm{s}=v
$$

Mr Hewitt lifts abox of glue to a shelf. The box is 8.6 kg and the shelf is 1.6 m high. How much energy was transferred in the process?

$$
\begin{array}{ll}
m=6.8 \mathrm{~kg} & W=m \times g \\
d=1.6 \mathrm{~m} & W=68 \mathrm{~N} \\
E=E & E=F \times d \\
F=68 \mathrm{~N} & E=68 \times 1.6 \\
& E=108.8 J
\end{array}
$$

$1 \underline{08.8}$ J

This proved too much, and Mr Hewitt hurt his back. He rigged a motor to the mains electricity and included a 3 A fuse for safety. What would be the minimum time that the motor would need to lift the box.

$$
\begin{array}{ll}
V=230 \mathrm{~V} & E=V \nsim I \times t \\
I=2.99 \mathrm{~A} & E /(V \times I)=t \\
E=108.8 \mathrm{~J} & 108.8 /(230 \times 2.99)=t \\
t=t & 0.1588=t
\end{array}
$$

The efficiency of the motor is only 5%. How long would it actually take to lift the box?

$$
\begin{array}{lll}
\text { Eff. }=0.05 & \text { Eff. }=\text { Use. / Tot. } & E=V \neq I \times t \\
\text { Use. }=108.8 J & \text { Tot }=\text { Use. } / \text { Eff. } & E /(V \nsim I)=t \\
\text { Tot. = Tot. } & \text { Tot. }=108.8 / 0.05 & 2176 /(230 \times 2.99)=t \\
V=230 \mathrm{~V} & \text { Tot. }=2176 \mathrm{~J} & 3.1548=t \\
I=2.99 \mathrm{~A} & &
\end{array}
$$

The power pack gives 12 V to the circuit.
The resistor RR has a rating of 10Ω. Calculate the current in A_{3}.

$$
\begin{array}{ll}
V=12 \mathrm{~V} & I=I \ltimes R \\
I=I & I=12 / 10 \\
R=10 \Omega & I=1.2 \mathrm{~A}
\end{array}
$$

The current shown in A_{1} is 2.5 A . Calculate the current in A_{2}.

$$
\begin{aligned}
& I_{\text {TOT }}=I_{1}+I_{2} \\
& I_{\text {TOT }}=2.5 \mathrm{~A} \\
& I_{1}=I \\
& I_{2}=1.3 \mathrm{~A}
\end{aligned}
$$

$$
1.3 \mathrm{~A}
$$

V_{2} shows a rating of 5 V . Calculate the calculate the value of R_{1}.
$V=5 \mathrm{~V}$
$I=1.3 A$
$R=R$
Calculate the value of R_{2}.
$V_{\text {TOT }}=V_{1}+V_{2}$
$V=I \nsim R$
$V_{\text {TOT }}=12 \mathrm{~V}$
$V_{1}=5 \mathrm{~V}$
$V=7 V$
$V / I=R$
$V_{2}=7 \mathrm{~V}$
$I=1.3 A$
$7 / 1.3=R$
$R=R$
$5.38 \Omega=R$
5.38Ω

$$
\begin{array}{ll}
\text { Calculate the resistance in the whole circuit. } & V=I \notin R \\
V=12 \mathrm{~V} & V / I=R \\
I=2.5 \mathrm{~A} & 12 / 2.5=R \\
R=R & 4.8 \Omega=R
\end{array}
$$

Show the potential difference of the complete circuit is 12 V .
$V=V$
$I=2.5 A$
$R=4.8 \Omega$

$$
\begin{aligned}
V & =I \times R \\
V & =2.5 \times 4.8 \\
V & =12 V
\end{aligned}
$$

Explain why the resistance of the circuit is less than 10Ω.
The potential difference is the same across the resistors but in parallel the current has more than one route this increases the total current around the loop which decreases the resistance using $V=I R$

Calculate the power transferred in the circuit using the voltage and current in the circuit.

$$
\begin{array}{ll}
P=P & P=I * V \\
I=2.5 A & V=2.5 \times 4.8 \\
V=12 \mathrm{~V} & V=12 \mathrm{~V}
\end{array}
$$

Using the power rating, show the total resistance of the circuit is less than 10Ω.
\qquad W

The Power of the circuit decreased by 50% when the filament lamps were added. Calculate the new current at A_{1}.
\qquad
A
Calculate the current at A_{2}.
\qquad
V_{2} shows a rating of 4 V , calculate the resistance in R_{1}.
\qquad
Calculate the resistance ofthe filament lamp in R_{2}.
\qquad
Ω
Explain why the resistance of the filament lamps hasincreased.

Using the equation $P={ }^{2} R$, calculate the resistance of the complete circuit.
\qquad Ω

Using the rules of resistance inseries and parallel circuits, confirm this calculation is correct.

The dancing minion has a power rating of 6W.
Calculate the amount of energy transferred in 2 minutes of dancing.
\qquad J

The minion is powered by a2V button battery, calculate the current.

What is the energy transferred if the minion dances for 6 minutes?
\qquad
After 6 minutes the chemical store of the battery has reduced, the current is now 2 A , calculate the charge flowing in the circuit.
\qquad C
The new voltage is 1.5 V . Calculate the energy transferred in the 6 minutes.
\qquad
J
Calculate the resistance in the circuit after the battery depleted.

The dancing minion is replaced with a new 2 V battery. The power rating is now 8 W . Calculate the time taken to transfer 1000 J of energy if the charge is 20 C .

Notes

