Mark Scheme Q1. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (i) | substitution (1) % difference = (<u>240 - 343)</u> ×100 343 | OR 343 – 240 in
numerator | (2) | | | evaluation (1) (-) 30 (%) | award full marks for
the correct answer
without working
allow 1 mark for
division by 240
yielding 43%
allow one mark for
240 x100 = 70 %
343 | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | (ii) | explanation linking any two of: | | (2) | | | reaction time is significant (with 0.5s or less) (1) | accept reaction time is
large compared with
travel time | | | | the reaction time will be different for each of the students (1) | | | | | effects on reaction times (1) | | | | | students are at different distances
(from starting pistol) (1) | | | | | anticipation of flash / bang (1) | differences in
perception / acuity of
light and sound | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | (iii) | explanation linking: | | (2) | | | use a (much) longer distance OR
use electronic timer (1)
with | all stand the same
distance from the
starting pistol (1) | | | | effect (1) | | | | | reduces/eliminates the significance/impact of the reaction time OR gives a more manageable time to measure | | | ### Q2. | Question number | Answer | Additional guidance | Mark | |-----------------|--|--|------| | | Substitution into $v = \frac{s}{t}$ to find v (1) | s is distance | | | | $v = \frac{1.5 \times 10^{11}}{500}$
Substitution into $v = f \times \lambda$ and unit conversion (1) | award full marks for
correct numerical
answer without
working | | | | $v = \frac{1.5 \times 10^{11}}{500} = f \times 670 \times 10^{-9}]$ Transposition (1) Rearrangement (1) | maximum 3 marks if λ in nm | | | | $f = \frac{\left(1.50 \times 10^{11}\right)}{500 \times \left(670 \times 10^{-9}\right)}$ | | | | | Answer (1)
4.5 x 10 ¹⁴ (Hz) | 4.4776 x 10 ¹⁴ (Hz) | (4) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | | recall and rearrangement (1) | | (3) | | | $\lambda = \frac{V}{f}$ | 3.0 (x 10 ⁸)
97.4 (x 10 ⁶) | | | | evaluation (1) | | | | | 3.08 (m) | accept 3.1 (m) | | | | | award 1 mark for
wavelength that rounds
to 3.1 to any other
power of 10 | | | | (so) length of aerial = 1.54 m (1) | independent mark.
allow ECF from
candidate's wavelength | | | | check working $\frac{3\times10^8}{2} = 1.5 \times 10^8$ gets only 1 mark for ecf | accept 1.5 (m)
award 2 marks for 1.5
to any other power of
10 | | | | | award full marks for the
correct answer without
working | | | | | Allow 1.46 rounded to
1.5 for 1 mark only if it
is ecf from mp2 | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | | recall and substitution (1)
(v =) 0.25 x 1.5 | | (2) | | | evaluation (1) | | | | | 0.38 (m/s) | accept 0.375 or 0.37
(m/s) | | | | | accept 37.5, 37 or 38
for 1 mark only | | | | | award full marks for
the correct answer
without working | | ### Q5. | Question
number | Answer | Additional guidance | Mark | |--------------------|---------------------------------|--|------------| | | uses data taken from x axis (1) | | (2)
AO3 | | | 28(cm) (1) | | | | | | award full marks
for correct
answer without
working | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--|------------| | (i) | | allow substitution and rearrangement in either order | (3)
AO2 | | | selection and substitution (1) | 27.007.4108 | | | | $3(.00) \times 10^8 = 2.45 (\times 10^9) \times \lambda$ | $2.45 \left(\times 10^9\right) = \frac{3(.00) \times 10^8}{\lambda}$ | | | | rearrangement (1) | | | | | $(\lambda =) \frac{3(.00) \times 10^8}{2.45 (\times 10^9)}$ | $\lambda = \frac{V}{f}$ | | | | evaluation (1)
0.12 (m) | | | | | | accept 0.122(m) | | | | | power of ten error gains
2 marks | | | | | award full marks for the correct answer without working | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--|------------| | (ii) | selection and substitution (1) | allow substitution
and
rearrangement in
either order | (3)
AO2 | | | (0.)55= 42 000
total energy supplied (to device) | $(0.)55 = \frac{42\ 000}{x}$ | | | | rearrangement (1) (total energy supplied to device=) $\frac{42\ 000}{(0.)55}$ | | | | | evaluation (1)
76 000(J) | accept any value
that rounds to
76 000(J) | | | | | 760/764/763(J)
gains 2 marks | | | | | any other power
of ten error gains
1 mark | | | | | award full marks
for the correct
answer without
working | | ## Q7. | Question | Answer | Mark | |----------|---|------| | number | | | | (i) | An answer that combines the following points of understanding to provide a logical description: | | | | take time T for waves to pass a fixed point (1) and frequency = number of waves
time taken (1) | (2) | | Question number | Answer | Mark | |-----------------|--------|------| | (ii) | A | (1) | | Question
number | Answer | Mark | |--------------------|--------|------| | (iii) | D | (1) | ### Q8. | Question
number | Answer | Mark | |--------------------|-------------|------| | (i) | smooth road | sand | | | approx | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|-------------------------|------| | (ii) | An explanation that combines identification - knowledge (1 mark) and reasoning/justification - understanding (1 mark): • both car and light ray slow down when entering sand / glass (1) | | (2) | | | direction changes towards
normal (1) | Bend towards the normal | | | Question
Number | Answer | Additional
guidance | Mark | |--------------------|---|------------------------------------|------| | | single straight line in upper right
quadrant (1) | ignore arrow
direction | (2) | | | direction change towards the normal (1) | conditional on
first mark point | | ### Q10. | Question | Answer | Mark | |----------|--|------| | number | | | | | An answer that provides a description by making reference to: | | | | transverse waves have oscillations perpendicular to direction of travel of the wave (1) whereas longitudinal waves have oscillations in the same direction as the direction of travel of the wave (1) | (2) | Q11. | Question
Number | Answer | Additional
guidance | Mark | |--------------------|--|--|------| | | A description including <u>particles</u> (at end) vibrate (more) (about fixed positions) (1) | allow atoms / ions /
molecules for
particles | (2) | | | cause neighbouring particles to
vibrate
(more) (1) | vibrations passed
along
OR
reference to
longitudinal waves
/ compressions and
rarefactions | | #### Q12. | Question number | Indicative content | Mark | |-----------------|--|------| | | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. | | | | The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. | | | | AO1 (6 marks) | | | | point A reaches the glass block before point B A moves into the glass block and slows down as light travels more slowly in glass than in air B is still in air so is travelling faster than A this causes part of the wavefront to change direction/refract by the time B reaches the block it will have travelled further than A therefore, the whole wavefront changes direction/refracts towards the normal | | | | at the other face, A exits first so the process is reversed the wavefront changes direction again so it is parallel to its original direction/refracts away from the normal | (6) | | Level | Mark | Descriptor | |---------|------|---| | | 0 | No rewardable material. | | Level 1 | 1-2 | Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) Presents an explanation with some structure and coherence. (AO1) | | Level 2 | 3-4 | Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1) | | Level 3 | 5-6 | Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1) | ### Q13. | Question
number | Answer | Additional guidance | Mark | |--------------------|--------|---|------| | (i) | (1) | any similar distance labelled wavelength / λ between the equivalent of 2 consecutive compressions | (1) | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | (ii) | description including any two from: | | (2) | | | particles vibrate / oscillate/ move
backwards and forwards (1) | allow air for particles | | | | along a radius/ parallel to direction of
travel/ energy transfer (1) | in same direction as
wave | | | | about mean /fixed positions (1) | | | | | | allow one mark for
'sound is a
longitudinal wave' if
no other mark
awarded | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | | An explanation linking: | | (2) | | | make the distance between students larger (1) | | | | | OR | | | | | viable alternative method
such as
use microphones / sound
sensors / datalogger (to
start and stop timer) (1) | | | | | with: | | | | | to give a more measurable time (1) | 50 m is too short (a
distance to produce a | | | | OR | measurable time) | | | | to remove (variable) reaction times (at start and end) / to reduce effect of reaction times / improve accuracy of timing (1) | gives a longer time – more
accurate measurement | | | | | do not accept 'more
accurate' without
qualification for either
method | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | | explanation linking:
wave P refracts (towards the
normal) (1) | accept 'upper layer' for 'P'
accept 'wavelength
decreases'
accept 'bends' for
'refracts' in this instance | (4) | | | because P slows down (1) AND wave Q is reflected (at an equal angle from the boundary) (1) | accept 'lower layer' for 'Q'
accept 'wavelength
unchanged'
accept 'wave Q bounces
off' (at an equal angle) | | | | without change of speed of Q (1) | allow one mark for
refraction and reflection if
no other mark awarded | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--|--------| | | substitution (1) | | (3) | | | 3.0 (× 10 ⁸)
5.8 (× 10 ⁻⁷) | | AO 2 1 | | | evaluation (1) | | | | | 5.2 × 10 ¹⁴ | answers that round to 5.2×10^{14} | | | | | award 2 marks for a
correct answer without
working | | | | | allow 1 mark for answers
that round to 5.2 to any
power of ten | | | | unit (1) | independent mark | | | | Hz | accept hz or s ⁻¹ or per
sec(ond) or hertz | | | | | accept kHz, MHz etc with
correct power (10 ¹¹ kHz,
10 ⁸ MHz) | | # Q17. | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|--------| | | an explanation linking: | | (3) | | | (the colours have) different
wavelengths (1)
different wavelengths / colours
travel at different speeds (1) | allow the word
frequencies for
wavelengths | AO 2 1 | | | so refract by different amounts (1) | for refract allow
bend/change
direction/follow different
path | | | Question
number | Answer | Mark | |--------------------|---|------| | (i) | sound waves are longitudinal but radio waves are transverse. sound waves need a medium but radio waves travel through a vacuum. sound waves have (much) lower velocity than radio waves. sound waves have lower frequency / greater wavelength than radio waves | (3) | | | sound waves are vibrations but radio waves are
electromagnetic waves. | | ### Q19. | Question
number | Answer | Acceptable | Mark | |--------------------|---|----------------|------| | (i) | An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (2 marks): • white light is a mixture of different wavelengths (1) • each wavelength / colour is refracted by a different amount (1) • short wavelengths are refracted more / ORA (1) | ignore colours | (3) | | Question
number | Answer | Acceptable | Mark | |--------------------|--|------------|------| | (ii) | An answer that combines the following points to provide a logical description of the method: Place a thermometer (with blackened bulb) beyond position of red light (1) Look for rise in temperature (measured by thermometer) (1) | | (2) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | | using cold row:
evaluate
(K=)376 (1) | | (3) | | | using warm row:
substitute K and ρ
$\frac{376}{\sqrt{1.16}}$ OR 349.10 (1) | other K from earlier calculation $\sqrt{1.16}$ | | | | 349 (m/s) to 3 sig figs (1) | any answer to 3 sig figs | | | | | 349.10 scores MP1 and MP2 | | | | | award full marks for the correct answer without working | | #### Q21. | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | (i) | evidence of use of scale on
horizontal distance axis only
(1) | may be seen on the
diagram | (2) | | | 12 (cm) (1) | range 11.5 to 12.5 (cm) award full marks for the correct answer without working | | | | | 6 (cm) or 30(cm) scores 1
mark (evidence of use) | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (ii) | a description to include:
moves up and down (1) | independent marking
points
vertical (oscillations) | (2) | | | at right angles / normal /
perpendicular to (direction of)
wave / travel (1) | not in the (direction of)
wave / travel | | | | | accept 'transverse wave'
for 2nd MP | | #### Q22. | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---|--------| | | a description to include: | | (2) | | | (the prong makes the) air
vibrate/oscillate (1) | | AO 1 1 | | | in the same direction as
/parallel to the wave travels
(1) | causes compressions and
rarefactions in air
transfers ke to air | | | | | longitudinal
credit can be given for a
labelled diagram | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|------------| | (i) | a description to include count the number of waves(1) | | (3)
AO1 | | | (arriving/passing a point) in a specific time(1) | ignore in one
second | | | | use frequency = <u>number of waves</u> time (1) | count the number of waves in one second scores 2 marks (MP1 and MP3) find the time between one | | | | | wave and the
next
scores 2 marks
(MP1 and MP2) | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|------------| | (ii) | substitution (1) | | (2)
AO2 | | | $1.5 = 0.7 \times \lambda$ | 1.5
0.7 | | | | | allow <u>0.7</u>
1.5 | | | | | for 1 mark | | | | rearrangement and
evaluation
2.1(4) m | award full marks for
correct answer
without working.
λ = v/f scores 1
mark | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------------| | (iii) | A description to include: | | (2)
AO1 | | | mention of oscillations/vibrations (1) EITHER transverse - (oscillations) perpendicular to direction of wave (travel) (1) OR longitudinal - (oscillations) in same direction as wave (travel) (1) | up and down OR
side to side
(movements) OR
back and forth | | | | | transverse
movement up and
down but
longitudinal is side
to side (1 mark
only) | | #### Q24. | Question | Indicative Content | Mark | |----------|---|------| | Number | | | | QWC * | An explanation including some of the following points Longitudinal {vibrations/oscillations} are {along/parallel to/in the same direction as} the direction of {travel/energy transfer} Transverse {vibrations/oscillations} are {across/perpendicular to/90° to/right angles to} the direction of {travel/energy transfer} Ultraviolet waves are transverse Ultrasound waves are longitudinal (ignore sound – not on list) Some seismic waves are longitudinal and some are transverse P waves are longitudinal S waves are transverse Longitudinal waves need a material for the vibrations whereas electromagnetic waves can pass through a vacuum IGNORE irrelevant material | (6) | | Level | 0 | No rewardable content | | | |-------|-------|--|--|--| | 1 | 1 - 2 | a limited explanation of: EITHER the {vibration/movement} direction and direction of {travel/movement} for transverse or longitudinal wave OR correctly identifying the wave type for at least one example from the list, e.g. Longitudinal waves move in the same direction as the wave moves Ultraviolet waves are transverse the answer communicates ideas using simple language and uses limited scientific terminology | | | | 2 | 3 - 4 | a simple explanation linking: EITHER directions of {vibration/oscillation} and wave travel for both types of wave OR direction of {vibration/oscillation} and wave travel of one type of wave with at least one example of a wave from the list OR the direction of `movement' and direction of {travel/movement} for transverse AND longitudinal waves AND correctly identifying the wave type for at least one example from the list e.g. | | | | 3 | 5 - 6 | a detailed explanation clearly differentiating between the directions | | | | |---|-------|--|--|--|--| | | | of {vibration/oscillation} for longitudinal AND transverse waves AND | | | | | | | at least one example of each type of wave from the list, e.g. | | | | | | | o In longitudinal waves the vibrations are in the same | | | | | | | direction as the wave travels. In transverse waves the | | | | | | | vibrations are at right angles to the direction the wave | | | | | | | travels. Ultrasound waves are longitudinal and ultraviolet waves are transverse. | | | | | | | the answer communicates ideas clearly and coherently uses a
range of scientific terminology accurately | | | | | | | spelling, punctuation and grammar are used with few errors | | | | | | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--|------| | Number | Substitution (1) (Speed =) $6.67 \times 10^{14} \times 4.5 \times 10^{-7}$ Transposition AND substitution (1) (time =) $4 \times 10^{16} - (6.67 \times 10^{-14} \times 4.5 \times 10^{-7})$ Evaluation (1) | Award full marks for correct answer with no working 3×10^8 (m/s) seen anywhere $\frac{4 \times 10^{16}}{3 \times 10^8}$ ECF candidate's speed maximum 2 marks Allow answers which round to | (3) | | | 1.33 x 10 ⁸ (s) | 130 000 000 IGNORE Power of Ten error until evaluation | |