

# HEAD BREAKING QUESTIONS 

Things that make you go... what?


A power pylon has 33 Kv passing through a low resistance wire of $6 \mathrm{~K} \Omega$. The wire is 149 m long and reaches a temperature of $32^{\circ} \mathrm{C}$. Calculate the power lost in the wires during transmission.

Lessons for next time:

Pylons are 95\% efficient. How much time would it take to transfer 1.5 MJ

Lessons for next time:

A toaster needs 64.12 kJ to toast bread. It is plugged into the mains, and the heating element has a resistance of $0.076 \mathrm{k} \Omega$. How much time would it take to toast a slice of bread.


Lessons for next time:
$\qquad$ min

On Planet Steve, an object has 2.6 MJ of KE was dropped from 1.3 km . Suggest a range of masses for the object.


Lessons for next time:


A Generator has an efficiency of $32 \%$ and produces $1.8 \mathrm{~kJ} / \mathrm{s}$. What is the total amount of energy being transferred to the generator?
$\qquad$
$14 \%$ of the energy from the water is transferred in turbines. Deduce how much energy is in the flowing stream.
$\qquad$

The Dam is 14 m high and the water is $14^{\circ} \mathrm{C}$. Each particle of water has an internal energy store of 134.5 pJ and oscillates at a frequency of 13 GHz . Calculate the mass of the water flowing through the dam.
$\qquad$

Calculate the velocity of the water through the HEP stations.

Lessons for next time:

State whether these are series or parallel circuits. Explain your answer.
A : The power pack is set at 12 V . There are two bulbs and 2 ammeters. One bulb has a voltage of 3 V and a current of 1.2A.

B: The total voltage of this circuit is 9 V and the total current is 3 A . One bulb, when measured with an ohmmeter has a resistance of $2 \Omega$. There are no smaller resistors than this one.

C : The voltage over a bulb is 6 V and the resistance is 0.51 A . the voltage of an immersion heater is 14 V and the resistance is $1.19 \Omega$.

An old generator produces $21 \mathrm{Kj} / \mathrm{min}$ of useful energy with every litre of fuel used. Each litre of diesel contains $15,757 \mathrm{~J}$ of chemical energy. What is the efficiency when the generator is filled with 3.3 L of fuel and runs out in 2.5 mins ?
$\qquad$ \%

After lubrication with $3.5 \% \mathrm{~m} / \mathrm{vmmol}$ silica lubricant, it is no $20 \%$ efficient. Calculate the useful energy output.

A rocket is launched at $450 \mathrm{~m} / \mathrm{s}$. The mass of the booster is 8 tonnes and the mass of the probe is 2.7 tonnes. How high did the rocket reach?

Lessons for next time:

What velocity would the rocket have to reach to achieve low earth orbit at 114 km

Lessons for next time:

Mr Hewitt lifts a box of glue to a shelf. The box is 8.6 kg and the shelf is 1.6 m high. How much energy was transferred in the process?
$\qquad$
J
This proved too much, and Mr Hewitt hurt his back. He rigged a motor to the mains electricity and included a 3A fuse for safety. What would be the minimum time that the motor would need to lift the box.


The efficiency of the motor is only $5 \%$. How long would it actually take to lift the box?

Lessons for next time:


The power pack gives 12 V to the circuit.
The resistor $R_{3}$ has a rating of $10 \Omega$. Calculate the current in $A_{3}$.
$\qquad$ A

The current shown in $\mathrm{A}_{1}$ is 2.5A. Calculate the current in $\mathrm{A}_{2}$.
$\qquad$
A
$V_{2}$ shows a rating of 5 V . Calculate the calculate the value of $R_{1}$.
$\qquad$
$\Omega$
Calculate the value of $\mathrm{R}_{2}$.
$\qquad$

Calculate the resistance in the whole circuit.
$\qquad$
$\Omega$

Show the potential difference of the complete circuit is 12 V .
$\qquad$
V
Explain why the resistance of the circuit is less than $10 \Omega$.

Calculate the power transferred in the circuit using the voltage and current in the circuit.
$\qquad$
W

Using the power rating, show the total resistance of the circuit is less than $10 \Omega$.

Lessons for next time:
$\qquad$ W

The Power of the circuit decreased by $50 \%$ when the filament lamps were added. Calculate the new current at $\mathrm{A}_{1}$.
$\qquad$
A
Calculate the current at $\mathrm{A}_{2}$.

Lessons for next time:
$\mathrm{V}_{2}$ shows a rating of 4 V , calculate the resistance in $\mathrm{R}_{1}$.
$\qquad$
Calculate the resistance of the filament lamp in $R_{2}$.
$\qquad$
$\Omega$
Explain why the resistance of the filament lamps has increased.

Using the equation $P=I^{2} R$, calculate the resistance of the complete circuit.
$\qquad$
$\Omega$
Using the rules of resistance in series and parallel circuits, confirm this calculation is correct.

The dancing minion has a power rating of 6 W .
Calculate the amount of energy transferred in 2 minutes of dancing.

$\qquad$
The minion is powered by a 2 V button battery, calculate the current.
$\qquad$

What is the energy transferred if the minion dances for 6 minutes?

Lessons for next time:

After 6 minutes the chemical store of the battery has reduced, the current is now 2 A , calculate the charge flowing in the circuit.
$\qquad$
C

The new voltage is 1.5 V . Calculate the energy transferred in the 6 minutes.

Calculate the resistance in the circuit after the battery depleted.
$\qquad$
$\Omega$

The dancing minion is replaced with a new 2 V battery. The power rating is now 8 W . Calculate the time taken to transfer 1000J of energy if the charge is 20 C .

Lessons for next time:
$\qquad$ min

Notes

