Energy Transfers and Systems

Re-read pages 24 and 25. You'll need to remember everything on those pages for this section. It could come up in the exam.

When a System Changes, Energy is Transferred

- A system is just a fancy word for a single object (e.g. the air in a piston) or a group of objects (e.g. two colliding vehicles) that you're interested in. You can define your system to be anything you like.
- 2) When a system changes, energy is transferred (p.25). It can be transferred into or away from the system, between different objects in the system or between different types of energy stores.
- 3) Whenever a system changes, some energy is dissipated and stored in less useful ways (p.26).
- 4) The efficiency of a transfer is the proportion of the total energy supplied that ends up in useful energy stores (p. 26).
- 5) You can use diagrams to show how efficient a transfer is, and which stores the energy is transferred to (see p.25 and 27).
- 6) How you define your system changes how you describe the energy transfers that take place (see below). A closed system is one that's defined so that the net change in energy is zero (p.25).

Energy can be Transferred by Heating...

- 1) A pan of water is <u>heated</u> on a gas camping stove.
- 2) When the system is the pan of water, energy is transferred into the system by heating to the thermal energy stores of the pan and the water, which increases their temperature.
- 3) When the system is the camping stove and the pan, energy is transferred from the chemical energy store of the gas to the thermal energy stores of the pan and the water, increasing their temperature.

...by Forces Doing Work...

- A box is <u>lifted</u> up off of the floor. The <u>box</u> is the <u>system</u>.
- 2) As the box is lifted, work is done (see next page) against gravity.
- 3) This causes energy to be transferred to the box's kinetic and gravitational potential energy stores.

If the box was dropped, the gravitational force would do work to transfer energy from the box's GPE store to its kinetic energy store. Kinetic energy store.

...or by Electrical Equipment

- 1) Electrical devices work by transferring energy between different energy stores.
- 2) For example, electric irons transfer energy electrically from the mains power supply to the thermal energy store of their metal plates.
- An electric toothbrush is a system. It transfers energy electrically from the chemical energy store of its battery to the kinetic energy store of its bristles.
- 2) Some of this energy is transferred out of the system to the surroundings by sound and by heating.
- You can show energy transfers using diagrams — see p.25. 711111111111111111111111 A hair druer is a system. It transfers energy into the system electrically from the mains supply to the kinetic energy store of the fan inside of it.
- It also transfers energy electrically to the thermal energy store of the heating element and some energy is transferred away by sound.

All this work, I can feel my energy stores being drained...

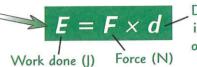
Make sure you understand exactly what a system contains before you describe any energy transfers.

Describe the energy transfers that occur when the wind causes a windmill to spin. Q1

[2 marks]

Work Done and Power

I'm sure you're no stranger to doing work, but in physics it's all to do with forces and energy.


If A Force Moves An Object, Work is Done

When a <u>force</u> moves an object through a <u>distance</u>, <u>WORK IS DONE</u> on the object and <u>ENERGY IS TRANSFERRED</u>.

- To make something <u>move</u>, some sort of <u>force</u> needs to act on it.
 The thing <u>applying the force</u> needs a <u>source</u> of <u>energy</u> (like <u>fuel</u> or <u>food</u>).
- 2) The force does 'work' to move the object and energy is transferred mechanically from one store to another (p.25).
- 3) Whether energy is transferred '<u>usefully</u>' (e.g. <u>lifting a load</u>) or is '<u>wasted</u>' (p.26) you can still say that '<u>work is done</u>'. Just like Batman and Bruce Wayne, '<u>work done</u>' and '<u>energy transferred</u>' are indeed '<u>one and the same</u>'.

- 4) You can find out how much work has been done using:
- 5) One joule of work is done when a force of one newton causes an object to move a distance of one metre.
 You can also write this as 1 J = 1 Nm (newton metre).

Distance moved in the direction of the force (m)

Find the energy transferred when a tyre weighing 70 N is lifted 1.2 m into the air.

work done = force × distance = $70 \times 1.2 = 84$ |

Here, work is being done against gravity.

Energy is being transferred to the tyre's

gravitational potential energy store.

A force doing work often causes a <u>rise in temperature</u> as energy is dissipated to the <u>thermal</u> energy stores of the moving object and its surroundings. This means that the process is <u>wasteful</u> and the <u>efficiency</u> of the process is <u>reduced</u>. Remember, efficiency = <u>useful</u> energy transferred by device (p.26).

When you push something along a <u>rough surface</u> (like a <u>carpet</u>) you are doing work <u>against frictional forces</u>. Energy is being <u>transferred</u> to the <u>kinetic energy store</u> of the <u>object</u> because it starts <u>moving</u>, but some is also being transferred to <u>thermal energy stores</u> due to the friction. This causes the overall <u>temperature</u> of the object to <u>increase</u>. (Like <u>rubbing your hands together</u> to warm them up.)

Power is How Much Work is Done per Second

- 1) Power is the RATE OF ENERGY TRANSFER. The unit of power is the watt (W). 1 W = 1 J/s. Another way of describing power is how much work is being done every second.
- 2) This is the very easy formula for power:
- 3) The <u>larger</u> the <u>power</u> of an object, the <u>more</u> work it does per second. E.g. if an <u>electric</u> heater has a power of <u>600 W</u> this means it

power (W) = $\frac{\text{work done (J)}}{\text{time taken (s)}}$

or $P = \frac{E}{t}$

transfers 600 J of energy every second. A 1200 W heater would transfer twice as much energy per second and so would heat a room quicker than the 600 W heater.

EXAMPLE:

A motor does 4.8 kl of work in 2 minutes. Find its power output.

- 1) <u>Convert</u> the values to the <u>correct units</u> first (see p.9).
- 4.8 kJ = 4800 J and 2 mins = 120 s
- 2) Substitute the values into the power equation.
- $P = E \div t = 4800 \div 120 = 40 \text{ W}$

Watt's power? Power's watts...

Make sure you're happy using the equations on this page before you move on.

Q1 A constant force of 20 N pushes an object 20 cm. Calculate the work done on the object.

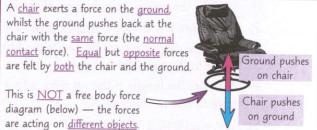
[2 marks]

Q2 An appliance transfers 6000 J of energy in 30 seconds. Calculate its power.

[2 marks]

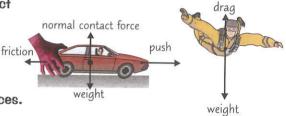
Forces

Force is a <u>vector</u> — it has both a <u>size</u> and a <u>direction</u> (unlike <u>scalar</u> quantities which only have a <u>size</u> — p.12). This means you can use <u>arrows</u> to represent the forces acting on an object or a system.

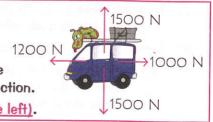

Interactions Between Objects Cause Forces

- 1) A force is a push or a pull on an object that is caused by it interacting with something.
- 2) Sometimes, objects need to be <u>touching</u> for a force to act. E.g. the <u>normal contact force</u> that acts between <u>all</u> touching objects, or <u>friction</u> between a car's <u>tyre</u> and the <u>road</u>. These are <u>contact forces</u>.
- 3) Other forces can act between objects that <u>aren't touching (non-contact forces)</u>. They're usually caused by <u>interacting fields</u>. E.g. the <u>gravitational attraction</u> between objects (like the <u>Earth</u> and the <u>Sun</u>) is caused by their <u>gravitational fields</u> interacting.

4) Interacting magnetic fields (p.85) cause attraction or repulsion between magnetic objects, and the electrostatic force causing attraction and repulsion between electrical charges (p.82) is due to interactions between their electric fields (p.84).


A chair exerts a force on the ground, whilst the ground pushes back at the chair with the ground pushes the ground pushes at the chair with the ground push

5) Whenever two objects interact, both objects feel an equal but opposite force (Newton's 3rd Law). This pair of forces is called an interaction pair. You can represent an interaction pair with a pair of vectors (arrows).


Free Body Force Diagrams Show All the Forces Acting on Objects

- A <u>free body force diagram</u> shows an <u>isolated body</u> (an object or system on its own), and <u>all</u> the <u>forces</u> acting on it.
- 2) It should include every force acting on the body, but none of the forces it exerts on the rest of the world.
- 3) The <u>sizes</u> of the arrows show the <u>relative magnitudes</u> of the forces and the <u>directions</u> show the directions of the forces.

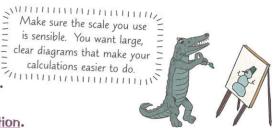
A Resultant Force is the Overall Force on a Point or Object

- 1) In most real situations there are at least two forces acting on an object along any direction.
- 2) If you have a <u>number of forces</u> acting at a single point, you can replace them with a <u>single force</u> (so long as the single force has the <u>same effect</u> as all the original forces together).
- 3) This single force is called the resultant force (or sometimes the net force on an object).
- 4) If the forces all act along the <u>same line</u> (they're all parallel), the <u>overall effect</u> is found by <u>adding</u> those going in the <u>same</u> direction and <u>subtracting</u> any going in the opposite direction.
- 5) Objects in <u>equilibrium</u> have a resultant force of <u>zero</u> see the next page. Objects in equilibrium are either <u>stationary</u>, or moving at a <u>steady speed</u> (this is Newton's 1st Law p.16).
 - The <u>normal contact force</u> felt by the van is <u>equal</u> to its weight.
 These forces act in <u>opposite directions</u>, so there is <u>no resultant force</u> in the <u>vertical</u> direction (1500 N 1500 N = 0 N).
 - The <u>frictional</u> force acting on the van is <u>smaller</u> than the <u>driving</u> force pushing it forward, so there <u>is</u> a <u>resultant force</u> in the <u>horizontal</u> direction.
- 1200 N 1000 N = 200 N. So the resultant force is 200 N (to the left).

Consolidate all your forces into one easy-to-manage force...

Free body force diagrams make most force questions easier, so if you can, always sketch one. Then get to work.

Q1 A car has a driving force of 2000 N and a weight of 1600 N. There is a total resistive force of 1200 N acting against the driving force. Draw the free body force diagram for the car.

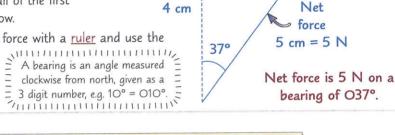

[2 marks]

Forces and Vector Diagrams

Scale drawings are useful things — they can help you resolve forces or work out the resultant force.

Use Scale Drawings to Find Resultant Forces

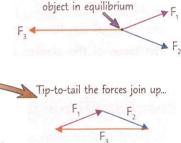
- 1) Draw all the forces acting on an object, to scale, 'tip-to-tail'.
- 2) Then draw a <u>straight line</u> from the start of the <u>first force</u> to the end of the last force this is the <u>resultant</u> (or <u>net</u>) force.
- 3) Measure the <u>length</u> of the <u>resultant force</u> on the diagram to find the magnitude of the force and the <u>angle</u> to find its <u>direction</u>.


1 cm = 1 N

drawn to scale

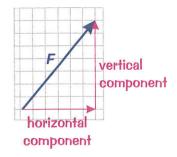
EXAMPLE:

A man is on an electric bicycle that has a driving force of $4\ N$ north. However, the wind produces a force of $3\ N$ east. Find the net force acting on the man.


- 1) Start by drawing a scale drawing of the forces acting.
- 2) Make sure you choose a <u>sensible scale</u> (e.g. 1 cm = 1 N).
- 3) Draw the <u>net force</u> from the tail of the first arrow to the tip of the last arrow.
- 4) Measure the <u>length</u> of the net force with a <u>ruler</u> and use the <u>scale</u> to find the force in N.
- 5) Use a <u>protractor</u> to measure the direction as a <u>bearing</u>.

3 cm

An Object is in Equilibrium if the Forces on it are Balanced


- If <u>all</u> of the forces acting on an object <u>combine</u> to give a resultant force of <u>zero</u>, the object is in <u>equilibrium</u>.
- 2) On a <u>scale diagram</u>, this means that the <u>tip</u> of the <u>last</u> force you draw should end where the <u>tail</u> of the first <u>force</u> you drew begins. E.g. for <u>three</u> forces, the scale diagram will form a <u>triangle</u>.
- You might be given forces acting on an <u>object</u> and told to find a <u>MISSING force</u>, given that the object is in <u>equilibrium</u>.
- 4) To do this, draw out the forces you do know (to scale and tip-to-tail), then join the END of the LAST force to the START of the FIRST force. Make sure you draw this last force in the right direction it's in the opposite direction to how you'd draw a resultant force.
- 5) This line is the missing force so you can measure its size and direction.

...so the resultant force is zero.

You Can Split a Force into Components

- 1) Not all forces act horizontally or vertically some act at awkward angles.
- 2) To make these <u>easier</u> to deal with, they can be <u>split</u> into two <u>components</u> at <u>right angles</u> to each other (usually horizontal and vertical).
- 3) Acting together, these components have the same effect as the single force.
- 4) You can <u>resolve</u> a force (split it into components) by drawing it on a <u>scale</u> <u>grid</u>. Draw the force <u>to scale</u>, and then add the <u>horizontal</u> and <u>vertical</u> components along the <u>gridlines</u>. Then you can just <u>measure</u> them.

Don't blow things out of proportion — it's only scale drawings...

Keep those pencils sharp and those scale drawings accurate — or you'll end up with the wrong answer.

Q1 A remote-controlled boat crosses a stream. The motor provides a 12 N driving force to the west. The river's current causes a force of 5 N north to act on the boat. Find the size of the net force. [2 marks]

Pivot

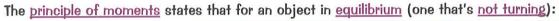
Distance

to the direction of the force'.

Distance

Force

Moments


Moments are all about rotations. Read this page thoroughly and don't let yourself get turned around.

A Moment is the Turning Effect of a Force

A force, or several forces, can cause an object to rotate. The turning effect of a force is called its moment. The size of the moment of the force is given by: This is actually 'distance normal

moment of a force (Nm) = force (N) \times distance (m)

- The force on the spanner causes a turning effect or moment on the nut (which acts as a pivot). A larger force or a longer distance (i.e. a longer spanner) would mean a larger moment.
- 2) To get the maximum moment (or turning effect) you need to push at right angles (perpendicular) to the spanner. Pushing at any other angle means a smaller distance, and so a smaller moment. This is what the 'normal to the direction of the force' bit means.

the sum of the clockwise moments = the sum of the anticlockwise moments

Levers Make it Easier for us to Do Work

Levers transfer the turning effect of a force — push one end of a lever down and the rotation around the pivot causes the other end to rise. Levers make it easier to do work as they increase the distance from the pivot at which a force is applied — the longer the lever, the smaller the force needed to give the same moment.

Calculate the moments from each force:

Moment from the rock's weight = $F \times d = 800 \times 0.25 = 200$ Nm anticlockwise

Moment from the push = $F \times d = 150 \times 2.00 = 300$ Nm clockwise

So there's a net CLOCKWISE moment of 100 Nm, meaning the rock will rise.

Gears Fit Together to Transmit Turning Effects

- Gears are circular cogs with 'teeth' around their edge. Their teeth interlock so that turning one causes another to turn, in the opposite direction.
- 2) They are used to transmit the rotational effect of a force from one place to another.
- 3) A force applied to a small gear creates a small moment. This gear applies the same force to the next gear. If this next gear is larger, this force is applied further from its pivot, so the moment is larger.
- Interlocked gears will rotate at different speeds the larger the gear, the slower it spins.

You can work out how the speeds and moments will change between gears by looking at the gear ratios. For example, look at the three gears above. The largest gear has 16 teeth and the medium gear has 8 teeth. The ratio of teeth between the largest gear and the medium gear is 16:8=2:1. This means that for every 1 turn the largest gear does, the medium gear will do 2 turns.

The force applied to each gear is the same, and the radius of a gear is equal to the distance of the applied force from the pivot. As moment = force \times distance, this means that the ratio of moments of two gears is equal to the ratio of the gears' radii, and therefore equal to the ratio of teeth. For the gears above, the moment of the largest gear to the medium gear is also 2:1 — so the moment gets doubled. The efficiency of machines.

Lubrication (p.27) reduces friction and unwanted energy transfers. Gears are often lubricated to improve the efficiency of machines.

Don't get in a spin — gear up for some more physics...

It's easy to get confused by gear questions. Adding arrows to each gear to show which way it's rotating can help.

A 10 N force is applied normal to a door, 85 cm from its hinges. Calculate the moment created. [2 marks] Q1

Revision Questions for Section 4

Well, that's that for Section 4 — have a go at these questions, then reward yourself with a nice cup of tea.

- · Try these questions and tick off each one when you get it right.
- When you've done all the questions for a topic and are completely happy with it, tick off the topic.

En	ergy, Work Done and Power (p.65-66)	
1)	What is a system?	
2)	Give three ways that the energy of a system can be changed.	
3)	Give the formula for calculating the work done by a force.	
4)	Describe how to convert between joules (J) and newton-metres (Nm).	
5)	True or false? A mechanical process becomes wasteful when it causes an increase in temperature.	
6)	Define power. State the equation relating power, work done and time.	
7)	What unit is power measured in?	
Fo	rces (p.67-68)	
8)	True or false? Friction is a non-contact force.	
9)	What force causes the repulsion of two like electrical charges? What causes this force?	
10)	What is an interaction pair?	1.
11)	What is a free body force diagram?	
12)	What is meant by the resultant force acting on an object?	
13)	A parachuter has a weight of 900 N. At one point during his fall, the air resistance acting on him is 500 N. In what direction is his resultant force at this point?	
14)	What is the resultant force on an object in equilibrium?	
15)	Describe how you would use a scale diagram to work out the resultant force on an object.	
16)	True or false? The arrows on a scale diagram for the forces on an object in equilibrium join up to create a closed shape.	
17)	Describe how you would resolve a force into horizontal and vertical components using a scale drawing.	
Moments (p.69)		
18)	True or false? A moment is a turning effect of a force.	
19)	State the equation for calculating the size of a moment.	
20)	What is the principle of moments?	
21)	Explain how levers make it easier to do work.	
22)	True or false? For a given force, a larger gear will turn slower than a smaller gear.	
23)	If a gear is spinning clockwise, what direction will a second gear directly connected to it spin?	
24)	How can you improve the efficiency of a machine that uses gears?	