Mark Scheme

Q1.

Question number	Answer	Additional guidance	Mark
(i)	substitution (1) 371 = (64.5+ m) x 3.5		(4)
	rearrangement (1) m+64.5 = 371 / 3.5		
	evaluation of total mass (1) m+64.5 = 106 (kg)		
	evaluation of woman's mass (1) m = 106-64.5 = 41.5 (kg)		
		full marks will be awarded for correct numerical answer without working	

Question number	Answer	Additional guidance	Mark
(ii)	substitution (1) $KE = \frac{1}{2} \times 64.5 \times 3.5^2$ evaluation (1) 395 (J)	allow answers which round to 395 e.g. 395.0625 full marks will be awarded for correct numerical answer without working	(2)

Q2.

	Answer	Additional guidance	Mark
(i)	selection and substitution (1)		(2)
	$(KE) = \frac{1}{2} \times 3.6 \times 10^5 \times 71^2$		A02
	evaluation (1)		
	9.1 × 10 ⁸ (J)	accept 9.07 x 10 ⁸ (J) accept 907 380 000 (J)	
		award full marks for correct answer without working	
		do not award a power of ten error	

	Answer	Additional guidance	Mark
(ii)	any one from:		(1) AO2
	mechanically (to the thermal store) (1)	allow dissipated	
	(heating) due to air resistance / friction (1)		
	thermally (1)	thermal (store) / heat (energy)	

Q3.

Question Number	Answer	Additional guidance	Mark
(i)		allow substitution and rearrangement in either order	(3) AO2
	selection and substitution (1)	24.000	
	3(.00) × 10 ⁸ = 2.45 (× 10 ⁹) × λ	$2.45(\times 10^9) = \frac{3(.00) \times 10^8}{\lambda}$	
	rearrangement (1)		
	(λ=) $\frac{3(.00) \times 10^8}{2.45 (\times 10^9)}$	$\lambda = \frac{V}{f}$	
	evaluation (1) 0.12 (m)		
		accept 0.122(m)	
		power of ten error gains 2 marks	
		award full marks for the correct answer without working	

Question Number	Answer	Additional guidance	Mark
(ii)	selection and substitution (1)	allow substitution and rearrangement in either order	(3) AO2
	(0.)55= 42 000 total energy supplied (to device)	$(0.)55 = \frac{42\ 000}{x}$	
	rearrangement (1) (total energy supplied to device=) $\frac{42\ 000}{(0.)55}$		
	evaluation (1) 76 000(J)	accept any value that rounds to 76 000(J)	
		760/764/763(J) gains 2 marks	
		any other power of ten error gains 1 mark	
		award full marks for the correct answer without working	

Q4.

Question number	Answer	Additional guidance	Mark
	A description to include:		(2)
	mention relevant energy store such as GPE or chemical (1)	allow KE or mechanical or thermal or heat	
	`correct' transfer in context (1)	chemical to (G)PE or chemical to KE (in lifting) allow misread GPE to KE/thermal on <u>slope</u>	
		Allow KE to GPE in lifting	

Q5.

Answer	Additional guidance	Mark
a description giving		(2) AO2
as the density (of expanded polystyrene) increases the (thermal) conductivity decreases (1)	ORA	
non-linear / gradient decreases / at a decreasing rate / levels off / plateaus /	allow inversely proportional / exponential for non-linear in this context	
becomes (almost) constant (1)	ignore negative correlation	
	unqualified quoted values are insufficient	

Question Number	Answer	Additional guidance	Mark
(i)	a diagram showing:		(3) AO2
	 apparatus labelled to include three from thermometer water 	independent of arrangement	
	 insulator / sand / sawdust / material 	ignore kettle and stop clock	
	• (copper) can (1)		
	thermometer in the water (1)		
	arrangement for water and insulator in and between copper cans (e.g. as in diagram below) (1)	accept reverse positions for water and insulator	
	thermometer		
	insulation (hot) water small copper can		

Question Number	Answer	Additional guidance	Mark
(ii)	any three factors from: {mass / volume} of water (1)	accept amount / specified values / "how much"	(3) AO3
	{volume / thickness / mass} of insulators / materials (1)	accept amount / specified values / "how much"	
	{starting / initial} temperature of water (1)	accept temperature of hot / boiling water / specified values	
	time interval / temperature change (1)	accept specified values of interval or change unqualified "same time" is insufficient	

Q	7	

	Answer		Acceptable answers	Mark
(a)	kinetic (energy)		Movement (energy)	(1)
			KE	
(b)	substitution:			(3)
	0.6 × 20	(1)		
			give 2 marks for correct answer	
	evaluation		no working	
	12 (1)			
			unit is an independent mark	
	J (1)		joules, Nm, kgm²/s² , Ws	
(c)	substitution:			(2)
	0.5 × 18	(1)		
	evaluation			
	9.0	(1)	9	
			give full marks for correct answer	
			no working	

			Indicative Content	
QWC		*(d)	a description including some of the following poi	nts:
			 chemical to kinetic while in his hand kinetic (gradually) to potential while rising eventually all potential at 10 m with a litt energy some mention of conservation of energy potential (gradually) to kinetic as falls / 1 with a little more thermal (heat) energy at 0 m sound energy 	le the
			at 0 m thermal (heat) energy	
Level	0	No rewardable content		
1	1 - 2	energy or a transfer energy increases OF • the answer commun limited scientific ter • spelling, punctuation	n and grammar are used with limited accuracy	
2	3 - 4	change/transfer e.g. it moves upwards O • the answer commur and organisation an	a giving detail of a relevant energy . kinetic energy changes into potential energy as R kinetic energy increases as it falls. hicates ideas showing some evidence of clarity d uses scientific terminology appropriately n and grammar are used with some accuracy	
3	5 - 6	a detailed description /transfers e.g. kineti	on of a sequence of relevant energy changes ic energy is transferred into potential energy as it nges back into kinetic energy as it falls back	

1	
	down.
	 the answer communicates ideas clearly and coherently uses a range
	of scientific terminology accurately
	 spelling, punctuation and grammar are used with few errors

Q8.

Question number	Answer		Additional guidance	Mark
(a)(i)	0.45 (s)	(1)	Allow any value \geq 0.4 and \leq 0.5	(1)

Question number	Answer	Additional guidance	Mark
(a)(ii)	An explanation that combines improvement of the experimental procedure (1 mark) and justification/reasoning which must be linked to the improvement (1 mark)		(2)
	 take pictures more frequently (1) in order to determine exact time of the release. (1) 	other responses may be acceptable	

Question number	Answer	Additional guidance	Mark
(a)(iii)	Substitution (1) F = 7.26 x 20.6 Evaluation (1) 150 (N)	Accept 149.6 (N) full marks will be awarded for correct numerical answer without working	(2)

Question number	Answer	Additional guidance	Mark
(a)(iv)	Rearrangement (1) v = a x t Substitution (1)		(3)
	$v = 23 \times 0.48$		
	Evaluation (1) 11 m/s	Accept 11.04(m/s)	
		full marks will be awarded for correct numerical answer without working	

Question number	Answer	Additional guidance	Mark
(b)	Substitution (1) PE = 7.26 x 10 x 1.3 Evaluation (1) 94.4 (J)		(2)

Q9.

	Answer	Acceptable answers	Mark
(a)	Description including 3 of the following:		(3)
		(G)PE (transferred) to KE Allow	
	 (Gravitational) potential energy (transferred) to KE(1) 	gravitational energy for GPE	
	 Idea of energy transfer to heat/sound whilst descending (1) 	Energy transferred to heat because of air resistance/ friction	
	 Chemical energy is transferred to heat energy in Andrew (1) Idea of energy dissipated on stopping (1) 	The energy goes to heat as he stops. Energy is transferred to the surroundings	
(b)(i)	substitution (1) 67 × 31	2080, 2100	(2)
	evaluation (1) 2077 (kg m/s)	working backwards using 2000 (v=) 29.85, 30 (m=) 64.52, 65	(2)
		67 X 31=2000 scores only one mark	
(b)(ii)	substitution (1) 2000 ÷ 2.3	answer to (b)(i)) \div 2.3	
	evaluation (1) 870 (N)	900, 869.6, 869.5 903	(2)
(b)(iii)	an explanation linking two of the following	force is reduced/ less /not as strong slows down/changes momentum	(2)
	• Force on Andrew is quite small (1)	gradually	
	 Because impact time is long (1) 	acceleration = 1.35 'g' or 13.5 m/s ² slows down (rate of) change of momentum scores 2 marks	
	The acceleration/deceleration		

is quite small (1)	
Because impact distance is far (1)	

Total question = 8 marks

Q10.

(a) An answe	r that combines the	- II	
following	ding to provide a	allow	
betwee positio suitable equipm • measu suitable along to with m • measu height (1) • repeat	rement of time en(or at) two ns using le timing nent (1) rement of le distance the runway netre rule (1) rement of vertical to starting position s AND averages se of a correct	stopwatch, light gates minimum is 0.5 m metal tape measure average speed = distance/time OR average speed = (speed at A - speed at B)/2	(4)

Question number	Answer	Additional guidance	Mark
(b)(i)	Substitution of correct data from graph and mass conversion (1) $0.5 \times 0.65 \times (0.61)^2$ Answer (1) 0.12 (J)	maximum of 1 mark if mass in g used allow tolerance of ±0.2 for speed	(2)

Question number	Answer	Additional guidance	Mark
(b)(ii)	 Tangent to the graph at h = 0.1 (1) Answer in the region 3.5 to 2.6 	either seen on graph or suitable pairs of values of Δv and Δh	
	3.6		(2)

Question number	Answer	Mark
(b)(iii)	An answer that combines points of interpretation/evaluation to provide a logical description:	
	 for each change in height, as the height increases the speed of the trolley increases 	
	 the greatest change in speed is between the change in height from 0.04 m to 0.9 m 	(2)

Question number	Answer	Additional guidance	Mark
(c)	 An answer that combines the following points to provide a logical description of the plan/method/experiment: identifies control variables (1) uses at least 3 different surfaces (1) calculates average speed for each surface and repeats (1) 	constant height, constant slope, constant starting points and same length of surface	(3)

Q11.

Question Number	Answer	Additional Guidance	Mark
(i)	recall (1)		(3)
	(ΔPE) = mgh	1300 = 7 x 10 x h	AO 1 1
		work done = force x distance	AO 2 1
	substitution and rearrangement (1)		
	$h = \frac{1300}{7x10}$		
	evaluation (1) 19 (m)	accept answers that round up to 19 (m) (e.g. 18.57 (m))	
		award full marks for the correct answer with no working	

Question Number	Answer	Additional guidance	Mark
(ii)	recall (1)		(3)
	$KE = \frac{1}{2} m v^2$		AO 1 1
	substitution and rearrangement (1)		AO 2 1
	v =√(2 x 1100÷8)	$v^2 = \frac{2 \times 1100}{8}$	
	evaluation (1)		
	17 (m/s)		
		accept answers that round up to 17 (m/s) (e.g. 16.58 (m/s))	
		award full marks for the correct answer with no working	

Q12.

Question Number	Answer	Additional guidance	Mark
	reading energies from graph (1)	accept 5.0 to 5.4	(3) AO 2 1
	5.2 and 3.9 (kJ)	and 3.7 to 4.1	
	substitution (1)		
	e.g. <u>1.3 x (100)</u> 5.2	0.18 to 0.32	
	evaluation (1)		
	25(%)	18 to 32 (%)	
		award full marks for the correct answer with no working	

Q13.

Question Number	Answer	
	B natural gas is the only correct answer	(1)
	A geothermal is not a non-renewable source of energy	AO 1 1
	C tidal is not a non-renewable source of energy	
	D solar is not a non-renewable source of energy	

Q14.

Question Number	Answer	Additional guidance	Mark
	an explanation linking:		(2)
	increased use of renewables/decrease use of nonrenewables (1)	accept "them" as renewable accept reason why renewables are beneficial	AO 1 1
	reason (1)	accept reason why non-renewable(s) are not beneficial	

Q15.

Question number	Answer	Additional guidance	Mark
	(original) GPE – KE (at bottom) (1)	allow (idea of) input – output	(1)
		allow wrong way round (eg output-input)	

Q16.

Question Number	Answer	Additional guidance	Mark
	An answer that includes:		(4)
	(measure) mass of the trolley (1)	weigh the trolley	
	(measure) (vertical) height / h (1)	NOT measure height of ramp	
	repeat for a range of masses (1)		
	plus any one from: method of identifying / measuring h (1) OR	e.g. use of reference mark	
	repeat firing with same mass (1)	accept "use ruler to measure height/h" for 2 marks	
		NOT "use ruler to measure height of ramp"	

Q17.

Question number	Answer	Additional guidance	Mark
	(vertical) height of slope (1)		(2)
	mass (of the toy car) (1)	allow (in this context) weight	
		if no other mark scored allow 1 mark for quoting either equation (Δ)GPE =mgh OR KE = $\frac{1}{2}$ mv ²	

Q18.

Question Number	Answer	Additional guidance	Mark
	reference to $\Delta PE = mg(\Delta)h(1)$	can be seen in calculations	(3)
	relevant values from graph and one calculation to find energy (1) repeated with 2 nd set of values (1)	e.g. 0.6 x 10 x 0.230 ≈ 1.4 (J) e.g. 1.0 x (10) x 0.138 ≈ 1.4 (J)	
		must see calculations for mp2 and 3	
		1 mark for 2 calculations of mh with 'g' omitted (MP3)	

Q19.

Question Number	Answer	Mark
	B. when there are energy transfers, the total energy does not change	(1) AO1
	 A is not correct because the total energy does not reduce C is not correct because the total energy does not reduce D is not correct because the total energy does not increase 	