	losed energy system. E _{in} = E _{out} + E _{waste}	Series Parallel 🧑 Ammeters in series	1 Watt is 1 Joule per second.
Store Store W	(aste energy – not always heat (e.g heater)	Series Parallel Ammeters in series $I_{TOT} = I_1 = I_2$ $I_{TOT} = I_1 + I_2$ I_1 Voltmeters in parallel	The power of a circuit depend on the current, which depends on the
	eating: conduction, radiation, dissipation	$V_{TOT} = V_1 + V_2$ $V_{TOT} = V_1 = V_2$ In parallel: resistance is	voltage (p.d.) and the resistance.
	issipation: Elost to surroundings	$R_T = R_1 + R_2$ $\frac{1}{R_{ror}} = \frac{1}{R_1} + \frac{1}{R_2}$ always smaller than the smallest resistor.	Coulombs carry the energy like a bucket carries water. More voltage
		$R_{TOT} = R_{TOT} = R_1 + R_2 = V_V = Smallest resistor.$	means more energy per C and more C per second
Work done: always use a distance based on the direction the force		Current: the number of coulombs per second. Rate of charge flow	
is working. E.g going up a slope, work against gravity, use height.		Voltage: the number of joules per coulomb.	A.C. changes directions, mains electricity, 50Hz, 230V
Work done against friction means increase in temperature.		Resistance: -ve electrons collide with +ions, KE transferred,	
Total GPE before fall = Total KE after fall just before landing – assume no energy dissipation. Reality = dissipation always.		nucleus oscillates more, thermal store increases, temp increases,	D.C. one direction, batteries
		current decreases.	Live wires – Brown, 230V. Earth Wires – Green/White, 0V. Neutral
		LDR and Thermistor	wires – Blue, 0V
P – rate of energy transfer.1J/s = 1W		\wedge Temp or Light $R \wedge as I \wedge due to$	Earth Wire has low resistance, path to earth for charge in case of
Contact Forces: Air resistance, Friction, Tension, Normal		\downarrow Resistance \uparrow in voltage	bad wiring, reduce chance of shock
Non-contact Forces: Gravity, Magnetism, Electrical, Nuclear		Breaks the normal rule	Fuses – wired into the live wire, melt when current becomes
		Ohmic conductor Diode	dangerously high
Friction caused by interlocking of microscopic irregularities. Lubrication stops surfaces touching, so less friction.		R is constant, if V-low R in 1	Circuit breakers – solenoid wired into live wire, high current causes
		temperature is V-high R in other direction	stronger magnetic field, attract a soft iron core to open a circuit.
Like poles attract, unlike poles repel. $N \leftarrow \rightarrow N N \rightarrow \leftarrow SS \rightarrow \leftarrow N$		Kinetic theory: more KE = greater internal energy = intermolecular bonds	This circuit has a DC powerpack and 2 fixed resistors in
Denser magnetic fields – stronger magnetic fields. Fields go N to S.		can break / expand because more vibration.	a barallel. There are 2 voltmeters connected in parallel over
Earth's core magnetic, compasses are magnetic proof N points N.		Solid: particles vibrate – cant break bonds, shape, volume fixed	the resistors. There is 1 ammeter in each branch and an
		Liquid: particles vibrate with enough KE to change shape.	ammeter connected in series with the powerpack. To change the voltage and therefore the current change the
Cobalt: high temperature magnets Steel: long-term magnets Iron: looses magnetism very quickly (electromagnets, microphones), Nickel:		Gas: particles vibrate with enough KE to change shape and volume	settings on the powerpack.
inexpensive cover for other more expensive magnets.		Density: usually solids greater density. Volume increases from S \rightarrow L \rightarrow G	
		1m ³ =1,000,000cm ³ always check units.	This circuit has an AC powerpack and 2 fixed resistors in
			Series. Each resistor has a voltmeter in parallel and 2
Induced magnets magnetic in a magnetic field, iron core wrapped in current carrying coil, magnetise by running magnets.		When increasing internal energy changes of state happen. At boiling /	ammeters in series with the powerpack and resistors. To
Transformers: \uparrow or \checkmark induced voltage and induced current.		melting points all energy is being used to break intermolecular bonds.	
Solenoid: coil of wire with current running through it.		incluing points an energy is being asea to break intermolecular bolids.	powerpack.
Magnetic field around wire with I running through it (+ to -), right hand		Specific latent Heat: Energy needed to change state of 1Kg	
rule (thumb current, fingers field).		Specific Heat Capacity: amount of energy to raise 1Kg by 1°C.	This circuit has a fixed voltage cell and variable resistor. T
Increase induced potential difference: increase size of magnet,			
number of coils, speed of movement.		Gas pressure: increases with increased temperature as increased KE.	increase the current, reduce the resistance in the variable resistor. There are 2 filament lamps connected in series,
Left Hand Rule: FBI perpendicular fingers show effect of current		Absolute Zero: -273ºC, or 0k (identical scale) no internal KE	that are connected in parallel with 1 other filament lamp.
carrying wire in magnet (thumb, F, first finger B, middle finger I)			Each lamp has a voltmeter connected in parallel and an
gallon (^L ammeter wired in series
Usually – physics experiments are about measuring values of terms		Test resistance in series / parallel circuits OR resistors and lamps.	brefix Symbol Multiply by Giga G V109 Triangles for formulas are not proof you
in equations. Eg. find speed, measure distance and time. For		E – 2 circuits (drawn), voltmeters in parallel and ammeters in series	Giga G X10 ⁹ I riangles for formulas are not proof you know the formula. Use them, but then
experiments or other questions ALWAYS try to find an equation.		P – record I and V in each component over a range of voltages and	$Mega \qquad M \qquad X10^6$ write the equation in full.
		compare.	$\frac{1}{100}$ Kilo k X10 ³ Terms that are multiplied together form
E – what equipment do you need to measure the terms / DV		I – I using ammeter, V using voltmeter, use R=V÷I	Centi c $X10^{-2}$ the base of the triangle.
P – how do you use the equipment		C – identical intervals when increasing V, same temperature. RAVE	
I – how are you measuring the IV / important value C – how can you keep all other variables the same.			<u>ATU°</u> (numerator) are at the top of the
		Measure the density of an irregular object	$\frac{1}{1}$ Micro μ X10 ⁻⁶ triangle.
RAVE - Repeat and average,	/ repeat and change it slightly.	E – overflow can, balance, graduated cylinder	Nano n X10 ⁻⁹
CV must be limited so any ch	aango is duo to IV changing:	P – find mass of object, drop in overflow can, overflow into grad. Cyl.	Pico p X10 ⁻¹²
		I – density is important term so d=m÷v	
Circuit diagrams are used for planning experiments. Label! If testing resistance, R=V÷I, specify series or parallel		C – find mass dry, overflow can full to brim, push down floaters RAVE	Meter (m), speed (m/s), velocity (m/s), acceleration (m/s ²), time (s),
Can change p.d using rheostat / variable resistor.		Maggura the appoint appoint of water	force (N), energy (J), mass (kg), frequency (Hz), wavelength (m),
Find volume using overflow can AND graduated cylinder.		Measure the specific heat capacity of water E – joulemeter, stopwatch, balance, insulated beaker, thermometer	work done (J), energy transferred (J), power (W)
Digital thermometers, easier to read more accurate.		P – find mass,take temperature, start timer, heat water, stop timer	
Take volume measurements from eye level		$I - SHC is important term so c=Q/(mx\Delta\theta)$	If asked for significant figures, then mark the first three numbers
Insulate with lids, polystyren		C – insulate beaker, use digital thermometer, RAVE	from the left. Round the third number (x>5 up, x<5 down)