Vectors have a number with a unit and a direction. Displacement / Velocity / Forces / Acceleration / Momentum Scalars only have a number with a unit. Distance / Speed / Mass / Temperature / Energy $g = 10m/s^2$ Distance / Time Velocity / Time N1 - forces affect motion (resultant force) N2 - F = a x m (a is proportional to f/m) Slope on line shows speed. Steeper line= acceleration. Steeper line= objects interacting) faster speed. No slope = No motion No slope = No acceleration. No slope = No motion No slope = No acceleration. Momentum before collision = momentum after. (H) Momentum before collision = momentum after. (H) Momentum before collision = momentum after. EM wave velocity 300,000,000m/s in a vacuum, change v in new media all EM waves are transverse and transfer energy. R M I V U X Y ROYGBIV Red light travels faster through denser media as it has longer λ y causes more tissue damage as higher f (Hertz more, Hurts more) Higher f means more energy transferred (mutate = cancer) M: heat cells / I: skin burns / U: damage cells, mutate / X,Y: mutate R:TV, radio (refracts in atmosphere) M: cooking, comms, satellite I: cooking, thermal images, optical fibres V: vision, photography U: security marks, fluorescent, disinfection X: internal scans (medical) y: sterilisation, cancer treatment.	$\Delta = \text{Delta means change and g = 10N/Kg}$ Energy transferred also known as work done. Energy is the ability to do work. Unit is joules (GPE) E _p = high objects / (KE) E _k =moving objects Thermal = internal energy / Chemical = burn / charge Falling objects all GPE = all KE before impact Forces also called transfers. Transfers are actions. Heating / Forces (incl. weight/gravity) / Radiation / Electrical Work Friction - heat is lost in mechanical systems (lubrication) Insulation - reduces heating of surroundings by object Conductivity - how easy to let heating occur, more is bad Efficiency - how much energy is used usefully. 0 to 1 or 0% to 100% - nothing is 100% Sometimes we assume 100% efficiency (falling rock) Electron 0 - shells Isotopes: same number of protons, different neutrons. C ₆ ¹² 6P, 6N, 6e / C ₆ ¹³ 6P, 7N, 6e / C ₁₄ ⁶ 6P, 8N, 6e (massive number) Atoms form positive ions by losing electrons. Electrons \checkmark energy levels with absorption of EM radiation Electrons \checkmark energy levels with emission of EM radiation. Insidation. Releasing energy makes atom more stable (nuclear decay) Background radiation: constant, natural low level radiation.	Transverse waves oscillate perpendicular to the direction of the wave Light, EM waves (RMIVUXG), water ripples Longitudinal waves oscillate parallel to the direction of the wave. Sound, some seismic waves Frequency (f) – waves per second Wavelength (λ) – length of one wave Period (T) – time for one full wave $T = \frac{1}{7}$ Amplitude (A) – displacement of particle / wave energy Refraction (1) – slows / speeds & bends (towards n = slows) Reflection (2) – bounces at same speed and angle Absorb (3) – doesn't pass through medium Transmit (4) – goes through medium Normal line (n) – measure angles from ray to n The path light goes from less dense to more dense – slows down and λX $\Delta \lambda$ mean different degrees of refraction. Lower Lambda Loads of R Alpha (α or $\frac{2}{4}$ He) 2 P and 2 N emitted from the nucleus. N \Rightarrow P + e ⁺ Positron (β^+ or $\frac{0}{-1}e$) positron emitted from the nucleus. N \Rightarrow P + e ⁺ Gamma (Y) EM radiation, no mass, no charge. Type lonisation Penetration Charge Malpha High Low +2 Beta + Medium Medium +1 Gamma Low High 0 Atoms - p1900: simple spheres p1911: electron plums in pudding 1911: alpha scattering, foil, nucleus +ve. Bohr, electron levels. Half life: time taken for ½ the nuclei in sample to decay or activity to ½ Radiation damage: ionise cells, damage cells, mutations, cancer Contamination: in contact with source, object radioactive after.
Electrons oscillate in wires = makes radio waves • EM waves released when electron fall from higher energy levels.	Activity(rate of decay, unit is Bq). Count-rate number of decays per s	Protection: exposed to radiation, not radioactive after. Protection: distance, limit dose, protective clothing, no licking
Usually – physics experiments are about measuring values of terms in equations. Eg. find speed, measure distance and time. For experiments or other questions ALWAYS try to find an equation. E – what equipment do you need to measure the terms / DV P – how do you use the equipment I – how are you measuring the IV / important value C – how can you keep all other variables the same. RAVE – Repeat and average / repeat and change it slightly.	Example: find the speed of waves in a water tank. Equation is v=x+t. E:ripple tank, ruler, stopwatch, camera. P:place ruler next to ripple shadows / edge of tank. Use stopwatch, time how long one wave takes to travel 20cm (0.2m) I:the important value is v so v=x+t C: keep tanks at eye level, if waves are moving too fast use camera to record exact times, use markers to easily see 0cm and 20cm RAVE: repeat 10 times, find average.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
CV must be limited so any change is due to IV changing: Reduce reaction time using automatic timer (not just electronic) Sound moves at 330m/s so use big distances or microphones + PC Use markers when resetting experiments = same place of release Lightgates only useful for trolleys not large objects Measuring (radioactivity) keep detector same distance for same time Repeats are only useful if averaged Reduce friction with lubrication, insulation reduces heating transfers	Example: find the speed of waves in a metal bar. Equation is $v=f x \lambda$ E:metal bar, rubber band, 2 clamps, hammer frequency app. P: measure length of bar and x2 to measure standing wave length, place frequency measuring app next to bar, hit with hammer. I:the important value is v so v=f x λ C: if testing different metals use same length bar / same rubber bands. RAVE: repeat 10 times, find average.	PicopX10 ⁻¹² Meter (m), speed (m/s), velocity (m/s), acceleration (m/s²), time (s), force (N), energy (J), mass (kg), frequency (Hz), wavelength (m), work done (J), energy transferred (J), power (W)If asked for significant figures, then mark the first three numbers from the left. Round the third number (x>5 up, x<5 down)