Mark Scheme

Q1.

	Answer	Acceptable answers	Mark
(i)	2.5 (m)	Allow answers between (and	(1)
		including) 2.45 & 2.55	
(ii)	0.7 (s)	Allow answers between (and	
		including) 0.68 & 0.72	
			(1)
(iii)	height /m 1.5 0.5 0 0 0 0 0.5 1 1.5 2 1 1.5 2 1.5 2 1.5 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 1.5 2 1.5 2 1.5 5 2 1.5 5 5 5		(3)
		Ignore any part of the graph after the peak	
	same shape as original (1)	реак	
	peak at 1.9 m (1)		
	time taken < 0.7 s (1)		
(iv)	An explanation linking:		(2)
		Inelastic collision worth (2)	
	<u>energy</u> lost (1)		
		as sound or heat	
	in collision with ground / air resistance (1)		

Q2.

Question number	Answer	Additional guidance	Mark
(a)(i)	Calculating the mean (1) 18.36	award full marks for correct numerical answer without working	
	Rounding to 2 s.f. (1) 18 (cm)		
			(2)

Question number	Answer	Additional guidance	Mark
(a)(ii)	Rearrangement (1) $t = \sqrt{\frac{\text{distance}}{500}}$	award full marks for correct numerical answer without working	
	Substitution and answer (1) time = 0.17 (s)	allow answers which round to 0.17, e.g. 0.1673	(2)

Question number	Answer	Additional guidance	Mark
(b)	 An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): 25.5 is an anomalous result (1) (because) it is much further away from the mean than the other results (1) 	ignore 19	(2)

Question number	Answer	Mark
(c)	 Take more readings (1) Idea that a third student should also measure the reaction time (1) 	(2)

Question number	Answer	Additional guidance	Mark
(d)	 An answer that combines the following points to provide a logical description of the plan/method/experiment: using a larger group of students/large population of students (1) and measure how their reaction time varies with age/height (1) 	allow any suitable variable	
			(2)

Q3.

Answer	Acceptable answers	Mark
A 600 kg m/s		(1)

Q4.

	Answer	Acceptable answers	Mark
(a)	C when the bungee cord is		(1)
	stretched the most		
(b)	A 600 kg m/s		(1)
(c)(i)	Substitution: (1)		(3)
	60 × 10 × 50 or 600 × 50		
		give two marks for	
	Evaluation: (1)	correct answer no	
	30 000	working	
	Unit: (1)	j / joule	
	J / Nm	30 kJ for full marks	
(c)(ii)	After falling 50 m / when the cord	tension starting to	(1)
	becomes straight/when cord starts to stretch	increase	
		at terminal velocity	
		ignore maximum	
		velocity/speed	
(c)(iii)	An explanation linking any two of		(2)
	not all GPE is transferred to KE (1)	not all GPE goes to KE	

some {of the GPE transfers to thermal	maximum energy is same (value) as GPE before falling /speed does not reach the speed at which he should fall	
	some lost as heat/sound (of rope or movement through air) (air) resistance / friction	
	ignore wind	

Q5.

Question number	Answer	Additional guidance	Mark
(i)	substitution (1)	une of	(2) AO2
	(force =) <u>8.7</u> 0.35	use of force = <u>change in momentum</u> time	
	evaluation (1)		
	25 (N)	allow numbers that round to 25 e.g 24 .8571	
		award full marks for correct answer without working.	

Question number	Answer	Additional guidance	Mark
(ii)	(magnitude) 25 (N) (1)	ecf from i allow	(2) AO3
	(direction) down(wards)/ towards floor (1)	arrow drawn pointing down	
		"south"	

Question number	Answer	Additional guidance	Mark
(i)	substitution (1) $371 = (64.5 + m) \times 3.5$		(4)
	rearrangement (1) m+64.5 = 371 / 3.5		
	evaluation of total mass (1) m+64.5 = 106 (kg)		
	evaluation of woman's mass (1) m = 106-64.5 = 41.5 (kg)		
		full marks will be awarded for correct numerical answer without working	

Question number	Answer	Additional guidance	Mark
(ii)	substitution (1) KE = ½ x 64.5 x 3.5 ² evaluation (1) 395 (J)	allow answers which round to 395 e.g. 395.0625 full marks will be awarded for correct numerical answer without working	(2)

Q6.

Question number	Answer	Additional guidance	Mark
(i)	attempt to use correct data from graph or equation (1)	quoting $a = (\Delta) v$ t or a = gradient (of	(3) AO2
	substitution (1) (a =) <u>26 – 14</u>	line)	
	34	0.3529 scores mp1 and mp2	
		<u>26</u> 34 scores mp1	
	evaluation to 2 sf (1)	independent mark	
	0.35 (m/s ²)	award full marks for correct answer without working.	

Question number	Answer	Additional guidance	Mark
(ii)	attempt to calculate area under the line (1) calculates EITHER area of triangle OR area of rectangle (1) 204 (m) or 476 (m) evaluation (1) 680 (m)	accept count squares use of v ² -u ² = 2ax $x = \frac{v^2 - u^2}{2a}$ allow ecf from (i)	(3) AO2
		award full marks for correct answer without working award 1 mark for final answer 408 (m)	

Q8.	
-----	--

	Answer	Additional guidance	Mark
(i)	conversion of time to s (1) (t =) 0.012 OR 12×10 ⁻³ OR 1.2×10 ⁻²	substitution and conversion in either order	(3) AO2
	substitution (1) (F=) $\frac{(0.075 \times -15.0) - (0.075 \times 8.2)}{0.012}$ OR	ignore signs on velocity accept time to any power of ten for substitution mark	
	$(F=)\frac{(0.075 \times 15.0) - (0.075 \times -8.2)}{0.012}$ OR $(F=)\frac{0.075 \times (15.0 + 8.2)}{0.012}$	(F=) $\frac{(1.125) + (0.615)}{0.012}$	
	evaluation (1) (-)150 (N)		

145 (N) scores 3 marks	
145 (N) to any other power of ten scores 2 marks maximum	
42.5 (N) scores 2 marks maximum 42.5 (N) to any other power of ten scores 1 mark maximum	
<mark>93.75 (N) or 51.25(N)</mark> 1.933 scores 1 mark maximum	
award full marks for correct answer without working	

	Answer	Additional guidance	Mark
(ii)	Any two from:	no marks awarded for answers in terms of energy	(2) AO1
	(forces are) equal / same size (1)		
	(forces are) opposite (direction) (1)	(forces are) one to the left, one to the right	
	(forces) act on different bodies (1)	one (force) acts on racket, one acts on ball	
	same type of force (1)	both are contact forces	
		if no other marks awarded, allow action and reaction (acting) for 1 mark	

Q9.

Question Number	Answer	Additional guidance	Mark
(i)	substitution in $v^2 - u^2 = 2ax$ (1) 24 ² - 7.6 ² = 2 × 3 × x	accept rearrangement and substitution in either order	(3)
	rearrangement (1) (x =) $\frac{24^2 - 7.6^2}{6}$		
	evaluation (1) 86 (m)	allow numbers that round to 86 (m)	
		award full marks for the correct answer without working	

Question	Answer	Additional guidance	Mark
Number			
(ii)	recall and substitution (1) (a = $\underline{v-u}$) 3.0 = $\underline{24-7.6}$ t t	Allow alternative method: average speed = distance / time i.e. 15.8 = 86(.37) / time	(3)
	rearrangement (1) t= <u>v – u</u> a	(t =) 86(.37) / 15.8	
	OR (t =) <u>24 - 7.6</u> 3.0		
	evaluation (1)		
	5.5 (s)	allow numbers that round to 5.5 (s) OR numbers that round to 5.4 if using alternative method and distance = 86	
		award full marks for the correct answer without working no marks for t = d / (v-u) = 86(.37) / (24-7.6) giving 5.3 s as an answer	

Q10.

Question number	Answer	Additional guidance	Mark
	Two stage calculation substitution ₁ (1) $(v^2 - 0 =) 2 \times 10 \times 3.8$	use of $v^2 - u^2 = 2ax$ OR $\frac{1}{2}mv^2 = mgh$ 76	(4) AO2
	evaluation of v (1)		
	(v =) 8.7 (m/s) substitution ₂ (1)	allow numbers that round to 8.7 e.g. 8.718	
	0.40 = <i>m</i> × 8.7	use of $p = mv$	
	rearrangement and evaluation (1) (<i>m</i> =) 0.046 (kg)	allow numbers that round to 0.046 e.g. 0.04598 award full marks for correct answer without working.	

Q11.

Question number	Answer	Additional guidance	Mark
	substitution (1)		(2) AO2
	$(t^2=) \frac{2 \times 1.4}{10}$	0.28	
	evaluation (1)		
	(<i>t</i> =) 0.53 (s)	allow numbers that round to 0.53 e.g. 0.52915	
		award full marks for correct answer without working.	

Q12.

Question Number	Answer	Additional guidance	Mark
	rearrangement (1)		(3)
	$a = \frac{(v^2 -)u^2}{2x}$		AO 2 1
	substitution (1) $a = (-)\frac{15^{2}}{2 \times 14}$ evaluation (1)	rearrangement and substitution in either order 225/28 for 2 marks	
	deceleration = 8(.04) (m/s ²)	accept – 8(.04) award full marks for the correct answer with no working	

Q13.

substitution: 0.5 × 18		(1)	(2)
evaluation 9.0	(1)	9	

Q14.

Question number	Answer	Additional guidance	Mark
(a)	Rearrangement (1) $m = \frac{f}{a}$ Substitution and conversion (1) $m = \frac{1870}{1.83}$ Answer and rounding to 3 s.f. (1) 1020 (kg)	maximum 2 marks if kN not converted to N award full marks for correct numerical answer without working	
	1020 (1.9)		(3)

Question number	Answer	Additional guidance	Mark
(b)	Rearrangement of $\frac{(v-u)}{t} = a$ (1) v = u + at Substitution (1) $v = 0 + 1.83 \times 16$ Answer (1)	award full marks for	
	29.3 (m/s)	correct numerical answer without working	(3)

Question number	Answer	Mark
(c)	Correctly identifies data points from the graph to calculate areas (1)	
	Calculates area under AB (1) 240 m	
	Calculates area under CD (1) 135 m	
	distance travelled at constant speed = 240 m is greater than distance travelled when slowing down = $135 \text{ m} (1)$	(4)

	Answer	Acceptable answers	Mark
(a)(i)	2.5 (m)	Allow answers between (and including) 2.45 & 2.55	(1)
(a)(ii)	0.7 (s)	Allow answers between (and including) 0.68 & 0.72	(1)
(a)(iii)	height /m 1.5 - 0 - 0 - 0.5 - 1 - 1.5 - 2		(3)
	line: same shape as original (1)	lgnore any part of the graph after the peak	
	peak at 1.9 m (1) time taken < 0.7 s (1)		
(a)(iv)	An explanation linking: <u>energy</u> lost (1)	Inelastic collision worth (2) as sound or heat	(2)
(b)(i)	shown using data Any two from kinetic energy before = 12.5 + 0 (=12.5) (1) kinetic energy after = 4.5 + 8 (=12.5) (1)		(2)
<u>(b)(::)</u>	Kinetic energy is the same before and after the collision (1)	lost	(1)
(b)(ii)	cyclotron (1)	named particle accelerator accept CERN	(1)

Question Number	Answer	Mark
*	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and can- didates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 (6 marks) • momentum = mass × velocity • action and reaction are equal and opposite (N 3) • force of R on Q = -force of Q on R • change in momentum of Q = - change in momentum of R time time time • time of collision same for both • change in momentum of Q = - change in momentum of R • no overall change in momentum • R accelerates because of force from Q • transfer of momentum between Q and R	(6) AO 1 1

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 An explanation that demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1)
		Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	 An explanation that demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1)
		 Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	 An explanation that demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1)
		 Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

[Answer	Acceptable answers	Mark
Γ	I			

(a)(i)	$momentum = 0.03 \times 170 (1)$	Accept 5.1 seen	(1)
	momentum before = momentum after	allow $5.0 = 0.80 \times v$ for 1 mark max	(3)
	(1)		
	$5.1 = 0.83 \times v(1)$	$5.0 = 0.83 \times v$	
	$5.1 = 0.85 \times V(1)$	v = 6.0 (m/s)	
	v = 6.1 (m/s) (1)	allow ecf from (a)(i) give full marks for	
		correct answer, no working	
(a)(iii)	Statement to include any two from		(2)
	 kinetic energy is not conserved 	ke not conserved / some ke lost	
	(1)		
	 (lost ke) appears as 		
	heat/sound (1)	no momentum lost	
	 momentum is conserved (1) 		
(b)(i)	an ovalabation linking		(2)
(b)(i)	an explanation linking		(2)
	• momentum (must be)		
	conserved (1)		
		photons move in opposite directions	
	 so must have positive and 		
	negative momentum (1)	indication of movement in	
		opposite directions (e.g. opposite	
(d)(ii)	$E = (2 \times) 9.1 \times 10^{-31} \times [3 \times 10^8]^2 (1)$	velocities) 8.2 x 10^{-14} (0.82 x 10^{-13}) for 1 mark	(2)
			(-)
	$= 1.6 \times 10^{-13}$ (J) (1)	give full marks for correct answer, no	
	-	working	

Q18.

Question Number	Answer	Additional guidance	Mark
	□ B centripetal force		(1)
	The only correct answer is B (correct term for circular motion)		
	A is not correct – incorrect term		
	c is not correct – incorrect term		
	D is not correct – incorrect term		

Q19.

Question Number	Answer	Acceptable answers	Mark
(a)(i)	Circular/spiral/circle		(1)

Question Number	Answer	Acceptable answers	Mark
(a)(ii)	An explanation linking three of the following. • (fast moving) <u>protons</u> (1) • absorbed by (1) • nuclei (1) • (produces)unstable nuclei (1)	bombard / hit /strike / collide with stable atoms / stable element	(3)

Question Number	Answer	Acceptable answers	Mark
(b)(i)	B momentum		(1)
Question Number	Answer	Acceptable answers	Mark
(b)(ii)	(Momentum/it)equals mass x <u>velocity</u>	p = m x v kilograms / kg is the mass and metres per second / m/s is the <u>velocity</u> Accept "times" for x	(1)

Question Number		Indicative Content	Mark
QWC	* (b) (iii)	 An explanation including some of the following points Diagram 1 Moving in opposite directions before collision inelastic collision stationary after collision momentum zero after collision (therefore) total momentum must have been zero before collision (therefore) cars were moving at the same speed in opposite directions (assuming cars have equal mass) both cars had kinetic energy before the collision KE zero after collision KE converted into heat, sound, elastic potential energy etc. Diagram 2 Elastic collision / almost elastic collision Momentum transferred from first to last sphere KE conserved / almost conserved (because)last sphere reaches same height as first sphere Three spheres always have zero momentum Small amount of energy transferred to sound/heat 	(6)

Level	0	No rewardable content
1	1 - 2	 A limited analysis of ONE collision which is given by a correct statement e.g. In collision 1, kinetic energy has been lost OR In collision 2 momentum is transferred from the first to the last sphere. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	 a simple analysis of BOTH collisions considering BOTH momentum AND kinetic energy correctly for each one e.g. In collision 1, momentum is conserved and the kinetic energy of the cars changes. In collision 2, momentum and the kinetic energy is conserved. answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed analysis of BOTH collisions considering momentum AND kinetic energy for each collision correctly for each AND detailed reference to EITHER diagram. e.g. In collision 1, the momentum before and after the collision is zero because momentum is always conserved, but the KE is lost. In collision 2, all the momentum and KE is transferred to the last sphere because_it gets to the same height as the first one. the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

	Answer	Additional guidance	Mark
(i)	a description using any four of the following points in a logical order:		(4) AO1
	measure the mass / weight of the trolley(s) / weigh the trolley(s) (1)	allow determine / find / calculate	
	determine the speed of trolley A (1)	use (average) speed = distance / time to calculate speed of trolley A	
	put one light gate (connected to data logger) further down the runway	may be shown on diagram	
	than trolley A and another beyond trolley B (1)	measure distance and time in appropriate places	
	trollies A and B stick together (1)		
	measure combined velocity / speed of A and B (1)		
	calculate momentum of trolley A before collision and A and B after collision (1)	calculate (total) momentum before and after collision	
	check for equality / velocity after collision is half that before collision (1)	(total) momentum before equals (total) momentum after	
	repeat and take mean / average (1)		

	Answer	Additional guidance	Mark
(ii)	{compensating for / reducing effect of / overcoming / balancing / cancelling effect of} friction OR so that trolley A travels at a constant speed / doesn't slow down	do not accept reducing / cancelling friction do not accept so trolley accelerates down slope	(1) AO3

Q21.

Question number	Answer	Additional guidance	Mark
	A description to include:		(4)
	measurement of (relevant) distance (1)	one of distance down slope or distance along bench or length of toy car/card	
	measurement of (relevant) time (1)		
		`record the distance the car travels and time it' scores 2 marks	
	use of speed = <u>distance</u> (1) time		
	detail (1)	For example: speed down slope × 2	
		<u>mark</u> distance along bench	
		use a light gate	
		speed gun at the bottom of the slope	
		Repeating AND averaging	

Q22.

Question Number	Answer	Additional guidance	Mark
	A description including:		(3)
	measure appropriate distance (1)	e.g. distance along runway from max height to P	
	measure appropriate time (1)	e.g. start the watch when trolley stops stop the watch when trolley hits spring	
	use		
	(average) speed = <u>distance</u> (1) time	accept s = <u>d</u> t	

Q23.

	Answer	Acceptable answers	Mark
(a)(i)	B it decreases		(1)
(a)(ii)	C it does not change		
			(1)
(b)(i)	horizontal arrow (judge by eye), pointing to the right anywhere on the diagram		(1)
(b)(ii)	substitution: (1) 130 000 × 75	give full marks for correct answer, no working	(2)

	evaluation: (1)	lgnore minus sign	
	9 750 000 (kgm/s) (Ns)	9.75 x 10 ⁶ (kgm/s) (Ns)	
(b)(iii)	9 750 000 kgm/s	same value as answer to (b)(ii)	
		lgnore minus sign	
			(1)
(c)(i) An explanation linking two of the following:			(2)
		pressure is smaller/less	
	 force is smaller/less (1) 		
	 momentum changes more 	slower deceleration force is	
	slowly (1)	proportional to rate of change of	
	lower deceleration (1)	momentum/F= (mv - mu)/t	
	• use of the formula (1)		
(c)(ii)	Any two from:	accept reverse argument for empty	(2)
		aircraft	expert
	(for loaded aircraft)		
		heavier/more passengers/more cargo	
	 has more mass (1) 		
	 has more momentum (1) has more k.e. (1) 	higher speed/moving faster	
	higher velocity		
	 brakes need to do more work (1) 		

Total marks for question = 10 marks

Q24.

	Answer		Acceptable answers	Mark
(a)	kinetic (energy)		Movement (energy)	(1)
			KE	
(b)	substitution:			(3)
	0.6 × 20	(1)		
			give 2 marks for correct answer	
	evaluation		no working	
	12 (1)			
			unit is an independent mark	
	(1)		joules, Nm, kgm²/s² , Ws	
(c)	substitution:			(2)
	0.5 × 18	(1)		
	evaluation			
	9.0	(1)	9	
			give full marks for correct answer	
			no working	

	Indicative Content	
		_

QWC		*(d)	a description including some of the following points:
			 chemical to kinetic while in his hand kinetic (gradually) to potential while rising / fr eventually all potential at 10 m with a little th energy some mention of conservation of energy potential (gradually) to kinetic as falls / 10 m- with a little more thermal (heat) energy at 0 m sound energy at 0 m thermal (heat) energy
Level	0	lo rewardable content	
1	1 - 2	 energy or a transfer of energy increases OR the answer communion limited scientific term spelling, punctuation 	and grammar are used with limited accuracy
2	3 - 4	 change/transfer e.g. it moves upwards OR the answer communic and organisation and spelling, punctuation 	giving detail of a relevant energy kinetic energy changes into potential energy as kinetic energy increases as it falls. cates ideas showing some evidence of clarity uses scientific terminology appropriately and grammar are used with some accuracy
3	5 - 6	 /transfers e.g. kinetic rises. This then chang down. the answer communic of scientific terminolo 	of a sequence of relevant energy changes energy is transferred into potential energy as it ges back into kinetic energy as it falls back cates ideas clearly and coherently uses a range ogy accurately and grammar are used with few errors

Q25.

Question number	Answer		Additional guidance	Mark
(a)(i)	0.45 (s)	(1)	Allow any value \geq 0.4 and \leq 0.5	(1)

Question number	Answer	Additional guidance	Mark
(a)(ii)	An explanation that combines improvement of the experimental procedure (1 mark) and justification/reasoning which must be linked to the improvement (1 mark)		(2)
	 take pictures more frequently (1) in order to determine exact time of the release. (1) 	other responses may be acceptable	

Question number	Answer	Additional guidance	Mark
(a)(iii)	Substitution (1) $F = 7.26 \times 20.6$	Accept 149.6 (N)	(2)
	Evaluation (1) 150 (N)	full marks will be awarded for correct numerical answer without working	

Question number	Answer	Additional guidance	Mark
(a)(iv)	Rearrangement (1) $v = a \times t$ Substitution (1) $v = 23 \times 0.48$		(3)
	Evaluation (1) 11 m/s	Accept 11.04(m/s)	
		full marks will be awarded for correct numerical answer without working	

Question number	Answer	Additional guidance	Mark
(b)	Substitution (1) PE = 7.26 x 10 x 1.3 Evaluation (1) 94.4 (J)		(2)

Q26.

Question number	Answer	Additional guidance	Mark
	An explanation linking any four from		(4) Exp
	force(s) associated with change(s) in momentum (use of Newton's second law) (1)	F= <u>(mv-mu)</u> t F=ma	
	detail of momentum changes, involving time (1)	$\frac{m_1 v_1 - m_1 u_1}{t} = - \left(\frac{m_2 v_2 - m_2 u_2}{t}\right)$	
	time of collision is same for both (1)		
	(therefore) momentum change is the same for both (1)		
	equal and opposite forces mean equal and opposite momentum changes (1)	with explanation leading to $m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$ for both marks	
	(total) momentum before a collision = (total) momentum after collision (1)		
	(conservation of momentum requires) no external forces acting (1)		

Q27.

Question number	Answer	Additional guidance	Mark
	An explanation that combines up to 3 points of application of knowledge and reasoning/justification	Ignore references to shot after it has left the athletes hand	(3)
	 Momentum increased if final velocity can be increased (1) 		
	• Distance (while in athlete's hand) is greater (1)		
	Time whilst subject to force is longer (1)	accelerating for a longer time	
	 using the equation F = (mv-mu)/t (1) 	use of $v = u + at$ or use of $v^2-u^2 = 2ax$	

Q28.

Question number	Answer	Additional guidance	Mark
	An explanation linking three of:		(3) AO1
	acceleration increases (1)		
	as F = ma (1)	independent mark	
	(and) mass decreases (1)		
	due to burning/using fuel (1)		

Q29.

Question number	Answer	Additional guidance	Mark
(i)	(students') reaction time (is significant compared with recorded time) (1)	g is really 9.8	(1) AO2

Question number	Answer	Additional guidance	Mark
(ii)	One from		(1) AO3
	use light gates (1)		
	use automatic timer (1)		
	Use time lapse/ stroboscopic photography (1)		
	drop from greater height (1)		
		ignore repeats or more people	

Q30.

	Answer	Additional guidance	Mark
(i)	an explanation linking two from:	accept reverse arguments throughout	(2) AO1
	(wet road means) less / no friction (between tyres and road) (1)	accept (road) more slippery / less grip accept idea of reduced visibility	
	(wet weather means) increased stopping distance (1)	accept braking or thinking distance in this context accept takes longer to slow down / stop ignore harder to brake	
	(slower speed means) shorter braking / stopping distance (1)		
	(dry weather / slower speed) reduces possibility of skidding / sliding / idea of losing control / crashing (1)		

	Answer	Additional guidance	Mark
(ii)	convert either distance or time (1)		(2) AO2
	(31 m =) $\frac{31}{1000}$ (km) or 0.031 (km)	(130 km =) 130 × 1000(m) or 130 000 (m)	
	OR	OR	
	(1 s =) $\frac{1}{3600}$ (h) = $\frac{1}{60 \times 60}$ (h) or 0.000 28 (h)	(1 h =) 60 x 60 (s) or 3600 (s)	
	evaluation (1)		
	(31 m/s =) 110 (km/h)	(130 km/h =) 36(.1)(m/s)	
		accept 111.6 or 112 (km/h) for 2 marks`	
		accept <u>1860 m/min</u> and <u>2167 m/min</u> for 1 mark each	
		award full marks for the correct answer without working	

	Answer	Additional guidance	Mark
(iii)	select and substitute into distance travelled = average speed x time (1)		(3) AO2
	46 = 31 x t	$31 = \frac{46}{t}$	
		$(t =) \frac{46}{31}$	
	rearrangement and evaluation (1)		
	(t=) 1.48(3) (s)	award two marks for the correct evaluation without working	
	evaluation given to 2 sf (1) (t =) 1.5 (s)	any answer written to 2 sf independent mark	
		1.5 scores 3 marks	
		1.4scores 2 marks1.50scores 2 marks0.67scores 2 marks1400scores 2 marks	
		0.673(9) scores 1 mark 1426 scores 1 mark	

Q31.

Question number	Answer	Additional guidance	Mark
(i)	 An explanation that combines identification - knowledge (1 mark) and reasoning/justification - understanding (1 mark): unbalanced / resultant force (1) (provided by) tension in the string / (weight of) metal disc (1) 		(2)

Question number	Answer		Additional guidance	Mark
(ii)	substitution into speed 1.15 = d / 0.04 evaluation (1) d = 0.046m			(2)
	= 4.6 cm	(1)	full marks will be awarded for correct numerical answer without working	

Question number	Answer	Additional guidance	Mark
(iii)	using $V^2 - u^2 = 2ax$ $V^2 = 1.15^2$ = 1.3225 (1) $2 \times a \times x = 2 \times 1.2 \times 0.55$ = 1.32 (1)	allow 1.3225 allow solving $V^2 - u^2 = 2ax$ for a	(2)

Q32.

	Answer	Acceptable answers	Mark
(i)	shown using data Any two from kinetic energy before = $12.5 + 0$ (=12.5) (1) kinetic energy after = $4.5 + 8$ (=12.5) (1)		(2)
	Kinetic energy is the same before and after the collision (1)	Kinetic energy is conserved/no energy lost	
(ii)	cyclotron (1)	named particle accelerator accept CERN	(1)

Q33.

		Indicative Content	

QWC		*	An explanation including some of the following ideas
			 brakes apply a force to the car
			 this force from brakes makes the car decelera velocity
			 a force also acts on the driver
			 driver decelerates at same rate as the car
			does not move with respect to car/ stays in the
			• moves slightly because belt stretches
			• small/ no horizontal force acts on the shopping
			 shopping bag continues at similar/ same veloc
			• until shopping bag falls off seat / hits dashboa
			 ideas can be expressed in terms of energy, mo and/or by reference to Newton's laws
	-		
Level	0 1 - 2	No rewardable content	of the difference in decelerations of at least two
		 describing the effect E.g. (at start) Cstops (for a longer time) OR S (carries on at s back / slowed down) the answer commun limited scientific terr spelling, punctuation 	(very quickly) while { P / S } carries on moving ame speed / hits the dashboard} while P is {held (by the seatbelt) icates ideas using simple language and uses ninology and grammar are used with limited accuracy
2	3 - 4	 twoof the objects Carfor at least one of the E.g.(at start) Cstops and at the road while OR S{carries on move Pis {held back / slow seatbelt) the answer communication and organisation and organisation and communication and comm	of the difference in decelerations of at least ir, Shopping and Passenger, including a reason e decelerations. (very quickly) because of friction at the brakes e { P / S } carries on moving (for a longer time) ving (at same speed) / hits the dashboard} while ved down} because of stretching force from the icates ideas showing some evidence of clarity d uses scientific terminology appropriately and grammar are used with some accuracy
3	5 - 6	 A detailed explanation Pincluding mention of as that named forces force of) friction is la for Pand S. {<u>So / th</u> speed (initially). Pde result etc} of the st OR The idea of {New change motion} and 	on of the relative decelerations of C , S and of the physical principles involved in any two such a are needed to change given motions. E.g. (The rge for C to {slow down / stop} quickly but is low us / therefore etc } Por S carry on at the same celerates more slowly than C { because / as a cretching (force) of the seatbelt. rton's first law / inertia / need for a force to the role of friction and {elastic / tension / producing the three named decelerations. OR

Named force needed for a described change in {momentum/kinetic energy} to {stop / slow down} each of the three objects.	
 the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors 	

Q34.

	Answer	Acceptable answers	Mark
(a) (i)	D the same size as the driving force	· ·	(1)
(a) (ii)	transposition: (1) {change in) speed= acceleration × time substitution: (1) speed = 12 × 4 evaluation: (1)	transposition and substitution can be in either order substitution mark can be scored when incorrectly transposed word/symbol equation is given	(3)
	48 (m/s) (1)	Give full marks for correct answer no working	
(b)	An explanation linking {acceleration of sports is 2x / time to reach 30 m/s is 1/2} that of family car / RA (1) mass of sports car LESS than 1/2 that of family car or RA (1) (so resultant force required is less)		(2)

		Indicative Content	
QWC	*(c)	An explanation including some of the following id	leas
		 brakes apply a force to the car 	
		 this force from brakes makes the car dec velocity 	elera
		 a force also acts on the driver 	

		 driver decelerates at same rate as the car
		 does not move with respect to car/ stays in the
		 moves slightly because belt stretches
		 small/ no horizontal force acts on the shopping
		 shopping bag continues at similar/ same veloc
		 until shopping bag falls off seat / hits dashboa
		 ideas can be expressed in terms of energy, mo and/or by reference to Newton's laws
	0	No rowardable content
Level	0	No rewardable content
L	1 - 2	 A limited explanation of the difference in decelerations of at least two of the objects Car (C), Shopping (S) and Passenger (P) mainly describing the effects.
		E.g. (at start) C stops (very quickly) while {P / S } carries on moving (for a longer time)
		OR S {carries on at same speed / hits the dashboard} while P is {held back / slowed down} (by the seatbelt)
		 the answer communicates ideas using simple language and uses
		limited scientific terminology
		spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	 A simple explanation of the difference in decelerations of at least twoof the objects Car, Shopping and Passenger, including a reason
		for at least one of the decelerations.
		E.g.(at start) C stops (very quickly) because of friction at the brakes
		and at the road while { P / S } carries on moving (for a longer time)
		I op elcarries on moving (at same speed) / hits the dashboard/ Willie
		P is {held back / slowed down} because of stretching force from the seatbelt)
		 the answer communicates ideas showing some evidence of clarity
		and organisation and uses scientific terminology appropriately
		spelling, punctuation and grammar are used with some accuracy
3	5 - 6	• A detailed explanation of the relative decelerations of C , S and
		P including mention of the physical principles involved in any two such
		as that named forces are needed to change given motions. E.g. (The
		force of) friction is large for Cto {slow down / stop} quickly but is low for Pand S. {So / thus / therefore etc}Por Scarry on at the same
		result etc ³ of the stretching (force) of the seatbelt.
		OR The idea of {Newton's first law / inertia / need for a force to
		change motion [}] and the role of friction and {elastic / tension / stretching [}] force in producing the three named decelerations. OR
		Named force needed for a described change in
		three by the tic energy to {stop / slow down} each of the
		 the answer communicates ideas clearly and coherently uses a range
		of scientific terminology accurately
		spelling, punctuation and grammar are used with few errors

Q35.

Question number	Indicative content	Mark
*	The indicative content below is not prescriptive and candidates are not required to include all of the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	(6)
	A01 (6 marks) • force needed to keep an object moving in a circle • when moving in a circle, direction of velocity changes • must be an acceleration • moving in a straight line with no resultant force at constant velocity A02 (6 marks)	
	 the woman changing direction while circling the man she is changing velocity (but not changing speed) therefore she is accelerating this requires a force towards the centre of her orbit this is a centripetal force when the man releases the woman, the centripetal force ceases there is no resultant force on the woman (if friction from the ice can be ignored) the woman therefore continue in a straight line she is now travelling at a constant velocity 	

Level	Mark	Descriptor
	0	No awardable content
Level 1	1-2	 Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2)
Level 2	3-4	 Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1)
		 The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2)
Level 3	5-6	 Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1)
		 The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2)

Question Number	Answer		Acceptable answers	Mark
(i)	Substitution <u>90</u> x 3.3 (1) 1000			(2)
	evaluation 0.30 (N)	(1)	A value which rounds to 0.30 eg 0.297	
			Give full marks for correct answer with no working	
			Ignore power of ten error until evaluation Allow 1 mark for 297 even with no working shown	

Number	
QWC *(ii) An explanation demonstrating some of the following: Descriptions of the graph Accelerates upwards during stage1 Maximum velocity is reached at the end of stage 1 Accelerates downwards / decelerates during stage 3 Comes to rest during stage 4. Interpretations of the shape of the graph Fuel is burnt creating thrust in stage Thrust is upwards in stage 1/ Gravity/weight (is always) a downward force Fuel runs out at end of stage 1 / has ran out by stage 2 Still going up during/ max height at end of stage 2 Still going up during max height at end of stage 2 Starts to fall at start of stage 3 Negative velocity during stage 3 Rapid deceleration / collision with the ground during stage 4/end of stage 3 Explanations for changes in velocity Resultant force upwards/ thrust greater than gravity force during stage 1 Acceleration non-linear because mass is decreasing / resultant force is increasing Linear deceleration in stage 2/3 because force of gravity is constant Resultant downward force/only gravity/ weight is acting during stage 2 and 3 Large resultant force of impact during stage 4	(6)

Level	0	No rewardable content
1	1 - 2	 A limited explanation involving descriptions of the graph. E.g. The rocket gets faster as it goes up during stage 1. The rocket slows down during stage 2 the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	 A simple explanation involving interpretations of the shape of the graph e.g. The rocket's velocity increases during stage 1 because the burning fuel provides a force. The rocket accelerates downwards during stage 3 the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 A detailed explanation which includes descriptions and interpretations for the shape of the graph including an explanation. E.g. The rocket's acceleration during stage 1 is increasing because it is losing mass as the fuel is burnt. It then slows down until it reaches maximum height at the end of stage 2 the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Q37.

Question Number	Answer	Acceptable answers	Mark
(i)	force (1)	If than one word given then 0 marks.	(1)

Question Number	Answer	Acceptable answers	Mark
(ii)	B 0.07kg		(1)

Question Number	Answer	Acceptable answers	Mark
(iii)	Arrow pointing (vertically) upwards (1)		(2)
	Value of 1.2 (N) (written near to arrow) (1)	Marks are independent of each other	

Question number	Answer	Additional guidance	Mark
(i)	4.4 m/s ²		(1)

Question number	Answer	Additional guidance	Mark
(ii)	graph (if projected back) does not pass through origin OWTTE (1)	accept not a straight line	(1)

Question number	Answer	Additional guidance	Mark
(iii)	 An answer that combines the following points to provide a plan/method: raise left hand end of runway (1) (so that) force of gravity on trolley will balance frictional 	(so that) trolley travels at constant speed when	(2)
	forces (1)	given a small push	

Q39.

eptable answers	Mark
-	(3)
PE (transferred) to KE Allow vitational energy for GPE ergy transferred to heat because of resistance/ friction energy goes to heat as he stops. ergy is transferred to the roundings	
ounanigo	
king backwards using 2000) 29.85, 30 =) 64.52, 65	(2)
-	X 31=2000 scores only one mark

(b)(ii)	substitution (1) 2000 ÷ 2.3	answer to (b)(i)) \div 2.3	
	evaluation (1) 870 (N)	900, 869.6, 869.5 903	(2)
(b)(iii)		force is reduced/ less /not as strong slows down/changes momentum gradually acceleration = 1.35 'g' or 13.5 m/s ² slows down (rate of) change of momentum scores 2 marks	(2)

Total question = 8 marks

Q40.

Question number	Answer	Additional guidance	Mark
(i)	C 7.7 x 10 ⁹ kg m/s		(1) comp
	Only one correct power of 10. The other answers are all distractors involving students misappropriating		
	`kilos' in some way, either in <u>kilo</u> grams or form <u>kilo</u> metres		

Answer	Additional guidance	Mark
rearrangement and substitution (1)		(2) exp
v = <u>momentum change</u> mass	$v = \underline{p}$ m	
$= \frac{7.5 (\times 10^{10})}{8(.0) (\times 10^{6})}$		
evaluation (1)		
	e.a. 9375, 9.375 x 10 ³	
9.4×10^3 (m/s)	9400 (m/s) 9.4 km / s	
	award full marks for the	
	working	
	award 1 mark for 9.4 to any other power of 10	
	rearrangement and substitution (1) $v = \frac{\text{momentum change}}{\text{mass}}$ $= \frac{7.5 (\times 10^{10})}{8(.0) (\times 10^{6})}$ evaluation (1) 9.4 × 10 ³ / number that rounds to	rearrangement and substitution (1) $v = \underline{mass}$ $v = \underline{p}$ m $= \frac{7.5 (\times 10^{10})}{8(.0) (\times 10^6)}$ $v = \underline{p}$ mevaluation (1) $e.g. 9375, 9.375 \times 10^3$ $9.4 \times 10^3 (m/s)$ $9.4 \times 10^3 (m/s)$ $e.g. 9375, 9.375 \times 10^3$ $9400 (m/s)$ $9.4 km / s$ award full marks for the correct answer without working award 1 mark for 9.4 to

Q41.

Question number	Answer	Mark
	⊠ B force	(1)
	Options A, C and D are all scalars.	

Q42.

Question Number	Answer	Additional guidance	Mark
	an explanation linking:		(2)
			AO 3 3b
	use an electronic timer / (1)	light gate/ data logger	
	to eliminate reaction time (1)		
		there are other options	
		which should be judged to this pattern	
		(e.g. increase distance to	
		reduce effect of reaction	
		time)	

Q43.

Question number	Indicative content	Mark
	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme.	(6)Exp
	The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	
	AO2 (strand 2) (6 marks)	
	Determining force	
	 Use of F = (mv - mu)/t or F = ma mass (of trolley(s)) needed and times during impact (t) 	
	 <u>Showing effect of crumple zone</u> experiment repeated with and without the spring (note) difference in contact times use of spring as crumple zone with spring, time for contact greater, less impact force 	
	 <u>Precautions or controls</u> times repeated and average taken careful controls – same starting position / same angle of slope / release without pushing etc. 	

Level	Mark	Descriptor	
	0	No awardable content	
Level 1	1-2	 The explanation attempts to link and apply knowledge a understanding of scientific enquiry, techniques and procedur flawed or simplistic connections made between elements in context of the question. 	
		 Lines of reasoning are unsupported or unclear. (AO2) 	
Level 2	3-4	 The explanation is mostly supported through linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, some logical connections made between elements in the context of the question. Lines of reasoning mostly supported through the application of relevant evidence. (AO2) 	
Level 3	5-6	 The explanation is supported throughout by linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, logical connections made between elements in the context of the question. Lines of reasoning are supported by sustained application of relevant evidence. (AO2) 	

	SUMMARY, for guidance				
Level	Mark	Additional Guidance	General additional guidance – the decision within levels		
			e.g At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.		
	0	No rewardable material.			
Level 1	1-2	Additional guidance	Possible candidate responses		
		Elements of physics	Use F = (mv - mu)/t		
	knowledge of techniques		Use F = ma		
			keep slope the same		
		from any section	repeat and average		
			use spring as crumple zone		
Level 2	3-4	Additional guidance	Possible candidate responses		
		Some knowledge of techniques and procedures with a logical	Measurements (difference in contact times) with and without the spring		
		connection made in one section and statement from one more section	Use F = ma in finding the force		
Level 3	5-6	Additional guidance	Possible candidate responses		
		Detailed knowledge of techniques and procedures with logical connections made in two	Measure the trolley mass(es)/ velocities/ impact time(s) and use F = ma in finding the force		
		sections and statement from one more section	Measurements (difference in contact times) with and without the spring		
			Same starting place for trolley each time.		

Question number	Answer	Additional guidance	Mark
(a)	An answer that combines the following points of understanding to provide a logical description:	allow	
	 measurement of time between(or at) two positions using suitable timing equipment (1) 	stopwatch, light gates minimum is 0.5 m metal tape measure	
	 measurement of suitable distance along the runway with metre rule (1) measurement of vertical height to starting position (1) repeats AND averages AND use of a correct 	average speed = distance/time OR average speed = (speed at A - speed at B)/2	
	AND use of a correct equation (1)		(4)

Question number	Answer	Additional guidance	Mark
(b)(i)	Substitution of correct data from graph and mass conversion (1) $0.5 \times 0.65 \times (0.61)^2$ Answer (1) 0.12 (J)	maximum of 1 mark if mass in g used allow tolerance of ±0.2 for speed	(2)

Question number	Answer	Additional guidance	Mark
(b)(ii)	 Tangent to the graph at h = 0.1 (1) Answer in the region 3.5 to 3.6 	either seen on graph or suitable pairs of values of Δv and Δh	
	0.0		(2)

Question number	Answer	Mark
(b) (iii)	 An answer that combines points of interpretation/evaluation to provide a logical description: for each change in height, as the height increases the speed of the trolley increases the greatest change in speed is between the change in height from 0.04 m to 0.9 m 	(2)

Question number	Answer	Additional guidance	Mark
(c)	 An answer that combines the following points to provide a logical description of the plan/method/experiment: identifies control variables (1) uses at least 3 different surfaces (1) calculates average speed for each surface and repeats (1) 	constant height, constant slope, constant starting points and same length of surface	(3)

Q45.

	Answer	Acceptable answers	Mark
(i)	horizontal arrow (judge by eye), pointing to the right anywhere on the diagram		(1)
(ii)	substitution: (1)	give full marks for correct	(2)
	130 000 × 75	answer, no working	(_)
	evaluation: (1)	Ignore minus sign	
	9 750 000 (kgm/s) (Ns)	9.75 x 10 ⁶ (kgm/s) (Ns)	
(iii)	9 750 000 kgm/s	same value as answer to (b)(ii)	
		lgnore minus sign	
			(1)

Q46.

	Answer	Acceptable answers	Mark
(i)	An explanation linking two of the		(2)
	following:		
		pressure is smaller/less	
	force is smaller/less (1)		
	 momentum changes more 	slower deceleration force is	
	slowly (1)	proportional to rate of change of	

	 lower deceleration (1) use of the formula (1) 	momentum/F= (mv – mu)/t	
(ii)	Any two from:	accept reverse argument for empty aircraft	(2) expert
	(for loaded aircraft)		
		heavier/more passengers/more cargo	
	 has more mass (1) 		
	 has more momentum (1) has more k.e. (1) 	higher speed/moving faster	
	 higher velocity 		
	 brakes need to do more work (1) 		

Q47.

Question Number	Answer	Additional guidance	Mark
(i)	substitution (1)		(2)
	2x2.5 0.74 ²	<u>5</u> 0.5476	AO 2 1
	evaluation (1)		
	9.1(3) (m/s²)		
		award full marks for the correct answer with no working	

Question Number	Answer	Additional guidance	Mark
(ii)	(0.74 + 0.69 + 0.81) ÷ 3 (1)	accept 0.7 or 0.75	(2)
	0.7(5) (1)	award full marks for the	AO 3 2a
		correct answer with no working	AO 3 2b
		0.746 or 0.747 or 0.750 scores 1 mark	

Q48.

	Answer	Acceptable answers	Mark
(i)	momentum = $0.03 \times 170(1)$	Accept 5.1 seen	(1)
(ii)	momentum before = momentum after (1)	allow $5.0 = 0.80 \times v$ for 1 mark max	(3)
		$5.0 = 0.83 \times v$	
	$5.1 = 0.83 \times v(1)$		
		v = 6.0 (m/s)	
	v = 6.1 (m/s) (1)	allow ecf from (a)(i) give full marks for	
		correct answer, no working	
(iii)	Statement to include any two from		(2)
	 kinetic energy is not conserved (1) 	ke not conserved / some ke lost	
	 (lost ke) appears as heat/sound (1) 	no momentum lost	
	• momentum is conserved (1)		

Q49.

	Answer	Acceptable answers	Mark
(i)	substitution (1)		
	67 × 31		
		2080, 2100	(2)
	evaluation (1)		
	2077 (kg m/s)	working backwards using 2000	
		(v=) 29.85, 30	
		(m=) 64.52, 65	
		67 X 31=2000 scores only one mark	
(ii)	substitution (1)	answer to $(b)(i)$ ÷ 2.3	
	2000 ÷ 2.3		
	evaluation (1)	900, 869.6, 869.5	(2)
	870 (N)	903	
(iii)	an explanation linking two of the	force is reduced/ less /not as strong	(2)
	following		
		slows down/changes momentum	
	Force on Andrew is quite small	-	
	(1)		
		acceleration = 1.35 'g' or 13.5 m/s ²	
	Because impact time is long		
	(1)	slows down (rate of) change of	
	(-)	momentum scores 2 marks	
	The acceleration/deceleration		
	is quite small (1)		
	Because impact distance is far		
		1	I

Q50.

Question Number	Answer	Acceptable answers	Mark
(a)	^B → ←		(1)

Question Number	Answer	Acceptable answers	Mark
(b)	A – 0 N		(1)

Question Number	Answer	Acceptable answers	Mark
(c)(i)	Substitution (1) 1.2 = (20 - 13) / t	1.2 = 7 / t	
	Transposition (1) t = $(20-13)/1.2$	t = 7/1.2	
	Evaluation 5.8 (s) (1) substitution and transposition can be in either order	5.833 (etc) Give full marks for correct answer, no working	(3)

Question Number	Answer	Acceptable answers	Mark
(c) (ii)	Substitution 1400 × 1.2 (1)		
	Evaluation 1700 (N) (1)	1680 Allow full marks for correct answer with no working shown	(2)

Question Number	Answer	Acceptable answers	Mark
(c) (iii)	An discussion to include three of the following points		
	The tow rope does not have to support the weight of the car (1)	forces are horizontal not vertical / only needs to overcome friction	
	Tension is caused by accelerating force (plus frictional forces) (1)	Force is needed to accelerate / resultant force is 0 at constant velocity	
	Tension is 5700 N (in this situation)(1)	Force to accelerate is 1700N	
	Forces could be kept below 12,000N (1)	Forces could be kept small	
	If acceleration is kept small (1)	If truck is driven gently/slowly	
	Numerical justification using f = m × a (1)		(3)

(Total for Question = 10 marks)

Q51.

Question Number	Answer	Acceptable answers	Mark
(a)(i)	Α		(1)

Question Number	Answer	Acceptable answers	Mark
(a)(ii)	A description to include any two of	Ignore energy changes resulting from impact with sand	(2)
	 Gravitational / potential energy reduces (1) 	GPE reduces	
	 kinetic energy increases (1) 	KE increases	
	 total energy remains constant (1) 	Allow GPE is transferred to KE for 2 mark	

Question Number	Answer	Acceptable answers	Mark
(b)	 A explanation linking (work is done) displacing the sand (1) with EITHER (as) kinetic energy of the ball(s) has been transferred (1) OR by the force between the 	sand moving/ pushing/ blowing upwards OWTTE or ball sinking into sand	(2)
	ball and the sand (1)		

Question Number	Answer	Acceptable answers	Mark
(c)(i)	transposition mass = momentum / velocity (1)	Subst. and transform. either order 1 mark only can be scored for correct substitution after incorrect transposition.	(3)
	substitution mass = 0.46 / 6.2 (1) evaluation 0.074 (kg) / 74g (1)	Give full marks for correct answer with no working. Answers that round to 0.074 (kg) 0.07 (kg)	

Question Number	Answer	Acceptable answers	Mark
(c)(ii)	substitution (impact) force = 0.46 / 0.17 (1)	Give full marks for correct answer with no working.	(2)
	evaluation 2.7 (N) (1)	Ignore power of ten error until evaluation	
		Answers which round to 2.7 Allow ECF if candidate has used	
		mass from part (i) in F=m(v-u) / T	
		$F = \frac{6.2 - 0}{0.17} \times 0.074 (1)$	
		= 2.7 (N) (1)	

Question Number	Answer	Additional guidance	Mark
(i)	a description to include:	ignore references to friction here	(2)
			AO 1 2
	add weight / mass (1)	by inclining runway	
	to the weight hanger (1)	allow (component of) gravity to act on trolley	

Question Number	Answer	Additional guidance	Mark
(ii)	a description to include:		(2)
	transfer mass (1)	allow weight(s) for mass	AO 1 2
	between trolley and hanger (1)		
		mass removed from trolley = mass added to hanger for 2 marks	

Question Number	Answer	Additional guidance	Mark
(iii)	an explanation that links: raise one end of the runway (1)	credit methods for reducing friction directly (e.g. oil wheels, runway etc.)	(2) AO 3 3b
	(so that) trolley (not attached to weight hanger) rolls at constant speed / just starts to move / (force of) gravity (on the trolley) balances forces of friction (1)	to reduce (effects of) friction	
		allow credit for identifying magnitude of frictional forces and subtracting or using graph	

	Answer	Additional guidance	Mark
(i)		note: this is a "show that" question	(2) AO2
	selection and substitution (1) (a =) ^{82 (- 0)} 36		
	evaluation (1) 2.3 (m/s²)	accept any value that rounds to 2.3 (m/s ²)	
		accept 2.2 (m/s²) for 1 mark maximum	
		answer of 2 (m/s ²) without a substitution scores 0 marks	

	Answer	Additional guidance	Mark
(ii)		allow substitution and rearrangement in either order	(3) AO2
	substitution (1) 82 ² (– 0 ²) = 2 x 2.3 x <i>x</i>	accept 2, 2.2, 2.27, 2.3 for "a" throughout	
	rearrangement (1) (x) = $\frac{82^2 (-0^2)}{2 \times 2.3}$	$(x) = \frac{v^2 (-u^2)}{2 \times a}$	
	evaluation (1) 1500 (m)	ignore sign	
		accept 1460 (m)	
		allow answers in the ranges: 1460 (m) to 1481 (m) 1520 (m) to 1530 (m) 1680 (m) to 1700 (m)	
		award full marks for correct answer without working	

	Answer	Additional guidance	Mark
(iii)	one statement from		(1)
			AO3
	take off aborted (1)	any other sensible suggestion	
	mechanical/engine failure (1)		
	acceleration reduced (1)		
	weather related reasons (1)		
	larger mass / heavier plane / extra passengers (1)		
	(longer runway required) for landing (1)		

Q54.

Question Number	Answer	Additional guidance	Mark
(i)	single arrow towards centre of the circle applied to the object (1)	judge by eye	(1)

Question Number	Answer	Additional Guidance	Mark
(ii)	an explanation including velocity is a vector (1)	velocity has (magnitude and) direction / velocity is speed in a (certain) direction	(2)
	(because) direction changes (1)		

Q55.

Question number	Answer	Additional guidance	Mark
(i) CLIP WITH (ii)	acceleration = <u>change in velocity</u> time (taken)	$a = \frac{v-u}{t} a = \frac{\Delta v}{t} \frac{v}{t}$ allow correct rearrangements seen here or in bii	(1) grad

Question number	Answer	Additional guidance	Mark
(ii) CLIP WITH (i)	substitution (1) <u>20 - 2</u> 12	<u>18</u> 12	(2)
	evaluation (1) 1.5 (m/s²)	-1.5 (m/s ²) award full marks (1 in bi and 2 in bii) for the correct answer without working, award 1 mark if 20-2 or 18 or 2-20 is seen and no other marks are scored If (incorrectly) $a = \frac{v^2 - u^2}{t}$ given in 3bi $a = \frac{20^2 - 2^2}{12}$ OR = 33 scores 1 mark	

Q56.

Question Number	Answer	Mark
	C N/kg is the only correct answer	(1)
		AO 1 1
	A J/kg is not dimensionally the same as m/s ²	
	<i>B</i> J/kg ² is not dimensionally the same as m/s ²	
	D N/kg ² is not dimensionally the same as m/s ²	

Q57.

Question number	Answer	Additional guidance	Mark
(i) CLIP WITH GRAPH	distance = area under graph (1)	attempt to find area seen on graph	(3)
	½ × 7 × 15 (1)	correct area(s) identified including calculation	
	52(.5) (m) (1)	53 (m)	
		allow 7 × 15 or 105 for 1 mark only	
		award full marks for the correct answer with no working	

Question number	Answer	Additional guidance	Mark
(ii) CLIP WITH GRAPH H paper	(curve) <u>starting</u> from 0,0 (1) of decreasing gradient (1)	curve can be above or below the line both of these are acceptable	(2)

Q58.

Question Number	Answer	Mark
	 A kgm/s B is not correct it is mass divided by velocity C is not correct because it is the product of mass and acceleration 	(1) AO1
	D is not correct because it is mass divided by acceleration	