

Topic Number	Topic Area	Sections to complete		
2	Motion & Forces	1, 2, 3, 4, 5, 22 & 23		
3	Conservation of Energy	6, 7 & 8		
4	Waves	9 & 10		
8	Energy – Forces doing work	6, 7, 8, 11 & 12		
10	Electricity & Circuits	12, 14, 15, 16, 17, 18 & 24		
12	Magnetism	25		
13	Electromagnetic Induction	26 & 27		
14	Particle model	19, 28 & 29		
15	Forces & Matter	20 & 31		
Triple Physics	Forces & Effects	13		
Triple Physics	Forces & Matter	21 & 32		
Triple Physics	Particle Model	30		

Symbol Equations	Word Equations	Unit Equations	Sym	<i>ibols</i>	Name a	and Unit
x = avx t	distance = average speed x time	$(m) = \left(\frac{m}{s}\right) x \ (s)$	х	Δh	Distance (m) Meters	Height (m) Meters
$a = \frac{(v-u)}{t}$	$acceleration = \frac{change\ in\ velocity}{time\ taken}$	$\left(\frac{m}{s^2}\right) = \frac{\left(\frac{m}{s}\right)}{\left(s\right)}$	av	Р	Speed (m/s) Meters / second	Power (W) Watts
F = m x a	force = mass x acceleration	$(N) = (Kg) x \left(\frac{m}{s^2}\right)$	t	E	Time (s) Seconds	Energy (J) Joules
W = m x g	weight = mass x gravitational field strength	$(N) = (Kg) x \left(\frac{N}{Kg}\right)$	a	Q	Acceleration (m/s ²) Meters per second squared	Charge (C) Coulombs
$\mathbf{p} = m \ x \ \mathbf{v}$	momentum = mass x velocity	$\left(Kg.\frac{m}{s}\right) = (Kg)x\left(\frac{m}{s}\right)$	v	V	End velocity (m/s) Meters per second	Voltage (V) Volt
$\mathbf{v} = f \mathbf{x} \lambda$	wave speed = frequency x wavelength	$\left(\frac{m}{s}\right) = (Hz) \ x \ (m)$	u	Ι	Start velocity (m/s) Meters per second	Current (A) Amps
$v = \frac{x}{t}$	wave speed $=$ $\frac{distance}{time}$	$\left(\frac{m}{s}\right) = \frac{(m)}{(s)}$	F	R	Force (N) Newtons	Resistance (Ω) Ohms
$\mathbf{E} = F \ x \ d$	work done = force x distance moved	$(J)=(N)\ x\ (m)$	m	Р	Mass (Kg) Kilograms	Power (W) Watts
$\Delta GPE = m \ x \ g \ x \ \Delta h$	$\Delta GPE = mass x gravitational fieldx vertical height$	$(J) = (Kg) x \left(\frac{N}{Kg}\right) x (m)$	W	k	Power (W) Watts	Constant No Unit
$KE = \frac{1}{2}x m x v^2$	$\Delta Kinetic \ Energy = \frac{1}{2} \ x \ mass \ x \ (speed)^2$	$(J) = \frac{1}{2} x (Kg) x \left(\frac{m}{s}\right)$	g	Х	Gravity (N/Kg) Newtons per kilo	Extension (m) Meters
$ \rho = \frac{m}{V} $	$density = \frac{mass}{volume}$	$\left(\frac{kg}{L}\right) = \frac{(Kg)}{(L)}$	р	G-	Momentum (Kg.ms ⁻¹) Kilogram meters/ sec	Giga- 10 ⁹
$P = \frac{E}{t}$	$power = \frac{work \ done}{time \ taken}$	$(W) = \frac{(J)}{(s)}$	f	М-	Frequency (Hz) Hertz	Mega- 10 ⁶
$P = \frac{E}{t}$	$power = \frac{energy\ transferred}{time\ taken}$	$(W) = \frac{(J)}{(s)}$	λ	K-	Wavelength (m) Meters	Kilo- 10 ³
$\mathbf{E} = Q \ x \ V$	energy transferred = charge moved x voltage	(J) = (C) x (V)	ρ	C-	Density (Kg/m ³) Kilogram / meter cubed	Centi- 10 ²
Q = I x t	charge = current x time	$(\mathcal{C}) = (A) x (s)$	V	m-	Volume (m ³ Meters cubed	Milli- 10 ⁻³
V = I x R	voltage = current x resistance	$(V) = (A) x (\Omega)$	Е	μ-	Work Done (J) Joules	Micro- 10 ⁻⁶
P = I x V	electrical power = current x voltage	(W) = (A) x (V)	F	n-	Force (N) Newtons	Nano- 10 ⁻⁹
$P = I^2 x R$	$electrical power = (current)^2 x resistance$	$(W) = (A) x (\Omega)$	d	p-	Distance (m) Meters	Pico- 10 ⁻¹²
$F = k x \times$	force on a spring = spring constant x extension	(F) = (k) x (m)	ΔGPE		Energy (J) Joules	

Click for practice. Click the top of the page to return.

		d	Di	istance Trave	m	
1	$d = s \times t$	S	S	Speed		m/s
		t	Ti	me Taken		S
d	S	t		d	S	t
	15	28			0.3	180
	7	17			55.5	0.4
700		35		450		22
500		60		320		16
200	8			52 000	64.5	
1700	75			6400	330	

Distance and speed:

- A. Calculate the distance a car will travel in 30s when moving at 12m/s.
- B. How long will it take a pupil to walk to a lesson 70m away at 1.5m/s?
- C. What is the speed (*in m/s*) of a car that travels 30km in 45 minutes?

		d	Distance Tra	avelled	m	Distance & Speed
1	$d = s \times t$	S	Speed		m/s	b. 46.67 s
		t	Time Taken		S	c. 11.11m/s
d	S	t	d	S	t	
420	15	28	54	0.3	180	
119	7	17	22.2	55.5	0.4	
700	20	35	450	20.4	22	d = s x t
500	8.33	60	320	20	16	
200	8	25	52 000	64.5	806.20	s = <u>d</u>
1700	75	22.67	6400	330	19.39	t

t = <u>d</u> s

	$a = \frac{\Delta v}{\Delta v}$			а	A	cceleration		m/s ²
2				Δv	Δv Change in Velocity			
		t		t	Ti	me Taken		S
а		Δv	t	<u>.</u>		а	Δv	t
		30	1	0			4	5
		40	5	;			8	50
2			3	0		5.3		22
10			19	9		4		6.2
6		84				30	9	
3		24				5	1250	

- A. Calculate the acceleration of a sprinter who takes 0.70s to reach their maximum speed of 11m/s.
- B. A penny dropped accelerates at 9.8m/s. How fast will it travel when it hits the bottom 3.6s later?
- C. How many seconds will it take a car to accelerate from 45km/hr to 90km/hr at 1.5m/s²?

Star t	End	t	Δv	а
10	6	2		
60	30	5		

Star t	End	t	Δv	а
18.6	12.4	4		
35	42	7.2		

	$a = \frac{\Delta v}{t} \qquad \frac{a}{\Delta v}{t}$		a Acceleration Δv Change in Velocity				m/s ²
2							m/s
			t	Ti	me Taken		S
a	Δv	t			а	Δv	t
3	30	10			0.8	4	5
8	40	5			0.16	8	50
2	60	30			5.3	116.6	22
10	190	19			4	24.8	6.2
6	84	14			30	9	0.3
3	24	8			5	1250	250

Acceleration & Speed a. 15.7 m/s² b. 35.28 m/s c. 8.33 s

> a = <u>ΔV</u> t

Star t	End	t	Δv	а
10	6	2	-4	-2
60	30	5	-30	-6

Star t	End	t	Δv	а
18.6	12.4	4	-6.2	-1.55
35	42	7.2	+7	+0.97

t = <u>ΔV</u> a

 $\Delta V = a x t$

	3 F = m x a	а	Acceleration	m/s²
3		F	Force	Ν
		М	Mass	kg

а	F	m	а	F	m
	35	7		4	0.64
	84	6		7.1	238
5		10	6.8		1237
7		94	9.42		0.56
8	64		3.5	20.5	
10	125		7.25	109	

- A. Calculate the force necessary to accelerate a 10kg mass by 17m/s².
- B. What acceleration will a car of mass 1100kg experience if a force of 550N acts on it?
- C. An aircraft's engines provide a thrust of 240kN. What is its mass if it accelerates by 8.0m/s²?

		а	Acceleration	m/s²
3	F = m x a	F	Force	N
		М	Mass	kg

m

0.64

238

1237

0.56

5.86

15.03

Force & Acceleration a. 1.5 W b. 3.166.67 s c. 43200 J

a	F	m	a	F
5	35	7	6.25	4
14	84	6	0.029	7.1
5	50	10	6.8	8411.6
7	658	94	9.42	5.28
8	64	8	3.5	20.5
10	125	12.5	7.25	109

 $\mathbf{F} = \mathbf{m} \mathbf{x} \mathbf{a}$

M = <u>F</u>

а

A = <u>F</u> m

		$W = m \times a$		g	Gr	avitational Field S	N/kg	
4	И			т	Ма	ISS	Kg	
		C		W	We	eight		N
g		т		W		g	т	W
		400	2	000			175	1825
		1.9		50			0.4	0.55
1.6				34		9.81		254
10				82		2.5		12 000
10		5				9.81	0.05	
10		90				23	45.3	

A.Calculate the weight of a 45kg girl

- B.A box weighs 49N. What is its mass?
- C.A 85kg astronaut in orbit weighs only 23mN. What is the gravitational field strength?

				Gr	avitational Field S	Strength	N/kg
4	И	$V = m \times g$	m	Ма	ass		Kg
		U	W	We	eight		N
<i>g</i>		т	W		<i>g</i>	т	W
5		400	2000		10.43	175	1825
26.3	2	1.9	50		1.375	0.4	0.55
1.6		21.25	34		9.81	25.89	254
10		8.2	82		2.5	4800	12 000
10		5	50		9.81	0.05	0.49
10		90	900		23	45.3	1041.9

F = m x a

m	=	<u> </u>

	<u>Weight</u>	
	a. 441 N	
	b. 5 kg	
с.	2.7 x 10 ⁴ N/Kg	

a = <u>F</u>

m

а

				т	Mass		Kg
5	P) = m x v		р	Momentum		Kg m/s
				v	Velocity		m/s
m		р	v		т	р	V
		100	5			460 000	15
		98	7			0.27	90
7			3		20 000		4.5
5			12		0.0056		82
50		125			325	7.5 × 10 ⁴	
15		105			1.3 × 10 ³	351	

- A. Calculate the momentum of a bullet of mass 0.010kg travelling at 400m/s.
- B. A bike and rider have a combined momentum of 1000kgm/s. If their velocity is 12m/s, what is their combined mass?
- C. What is the velocity of a 58g tennis ball with a momentum of 2.4kgm/s?

				m	Mass		Kg	
5		$\mathcal{P} = \mathbf{m} \mathbf{x} \mathbf{v}$			Momentum	Kg m/s		
	-			v	Velocity		m/s	
m		р	v		m	р	v	
20		100	5		30 666.67	460 000	15	
14		98	7		0.003	0.27	90	
7		21	3		20 000	90 000	4.5	
5		60	12		0.0056	0.46	82	
50		125	2.5		325	7.5×10^{4}	230.77	
15		105	7		1.3×10^{3}	351	0.27	

 $P = m \times v$

m = <u>p</u> v

<u>Momentum</u> a. 4 Kg m/s b. 83.3 Kg c. 41.38 m/s

v = <u>p</u>

m

				h		Change in I	Height		m		
C	Ep = 1	m x g x Δh		m x g x Δh	g		Gravitationa	al Field Streng	th	N/Kg	
Ö				E_{F})	Gravitationa	al Potential En	ergy	J		
				т		Mass			Kg		
	h	E _P	m			h	E _P	m	ı		
		40000	35	5			6120	2.	5	Click here for	
		57000	60)			229	53	3	rearranged equation	
	20		70)		2.5		18	3		
	25		150	0		15		9()		
	18	150				72	1.8 × 10 ⁵				
	0.4	1700				6.5	0.31				
Т	nese calculati	ions are on Ea	irth whe	ere 🛛 =	=10	These of	alculations are	e on the	e Moon where	<i>q</i> =1.6	

- A. Calculate the gravitational potential energy gained when a 700kg light aircraft takes off to an altitude of 500m.
- B. What height can a 40kg rock reach if it gains 2 800J of gravitational potential energy?
- C. What is the mass of a bird that loses 50J of gravitational potential energy when it dives from a 20m cliff?
- D. A robot on the surface of Mars has a mass of 190kg. It gains 620kJ of gravitational potential energy when it climbs 0.85km up a hill. What is the strength of gravity on Mars?

		h	Change in Height	m
6	Ep = m x g x Δh	g	Gravitational Field Strength	N/Kg
6		E_P	Gravitational Potential Energy	J
		т	Mass	Kg

	<u>GPE</u>
а.	3.43 x 10⁶ J
b	. 7.14 m
с.	0.255 Kg
d.	3.84 N/Kg

h	E_P	т	
11.43	40000	35	1
95	57000	60	2
20	14 000	70	2
25	375 000	1500	
18	150	0.83	1
0.4	1700	425	6

h	E_P	т
1530	6120	2.5
2.70	229	53
2.5	725	18
15	2160	90
72	1.8 × 10 ⁵	1 562.5
6.5	0.31	0.03

 $Ep = m x g x \Delta h$ m = <u>Ep</u> g x ∆h g = <u>Ep</u>

m x Δh

Δh = <u>Ep</u> g x m

These calculations are on Earth where g = 10 These calculations are on the Moon where g = 1.6

			E_K	Ki	netic Energy		J	
7	Ek :	= ½ x m x v	2 m	M	ass		Kg	
			v	S	peed		m/s	
E_{k}	E_{K} m		v		E_K	т	v	
	200		9			250	3.5	Click horo for
		10	0.5			0.08	12.3	rearranged equation
80)		4		9		20	
176	17600		8		279		2.4	
187	1872 208				7.2	0.05		
200	2000 0.004				640 000	1600		

n

- A.Calculate the kinetic energy of a bullet of mass 0.010kg travelling at 400m/s.
- B.A car has a kinetic energy of 50 000J when travelling at 10m/s. What is the mass of the car?
- C.A bowler's arm does 90J of work when throwing an 80g rounders ball. What is the speed of the ball?

7				E_K	Ki	netic Energy		J
	Ek :	= ½ x m x v ²	2	m	Ma	ass		Kg
				v	Sp	beed		J Kg m/s V 3.5 12.3 20 2.4 16.97 28.28
Ŀ	E_K m					E_K	т	v
8100		200		9		382 812.5	250	3.5
1.25		10		0.5		6.05	0.08	12.3
8	30	10		4		9	0.045	20
17	600	550		8		279	96.88	2.4
1872		208	4	4.24		7.2	0.05	16.97
2000		0.004	1	1000		640 000	1600	28.28

Power & Energy a. 1.5 W b. 3.166.67 s c. 43200 J

 $Ek = \frac{1}{2} \times m \times v^2$ Ek = m

0.5 x v²

√ (<u>Ek</u>) = v 0.5 x m

8		<i>efficiency</i> = <u>useful energy</u> total input											
Efficie	ency	Useful Out	Total In		Efficiency	Useful Out	Total In						
		1500	2000			10	200						
		60	300			1050	1500						
0.5	50		2000		6%		50 000						
0.2	20		600		57%		2530						
0.90		200			85%	5990							
0.05		4000			35%	2100							

- A. Calculate the efficiency of a 60W lightbulb that emits2.0W of visible light.
- B. A washing machine has an efficiency of 20%. If the power supplied is 1 200W, how much power is usefully shifted?
- C. Steam trains have very low efficiencies – around 5.0%. If it needed 50MW to pull the carriages, what power must have been supplied?

- A. Calculate the efficiency of a device that usefully shifts 20J of energy when supplied with 50J.
- B. A microwave oven has an efficiency of 60%. How much does the internal energy store of a bowl of baked beans increased when 80 000J of energy is supplied to the oven?
- C. A wind farm has an efficiency of 0.17. If it supplies 120TJ of energy to the National Grid, how much energy was in the wind's kinetic store?

Efficiency & En a. 0.4 b. 48 000	<i>efficiency</i> = <u>useful energy</u> total input											
- C. 706 IJ (7.06 J)	Total In	Useful Out	Efficiency	Total In	Useful Out	Efficiency						
Efficiency & P	200	10	0.05	2000	1500	0.75						
a. 0.33	1500	1050	0.7	300	60	0.2						
b. 240 V	50 000	3000	6%	2000	1000	0.50						
C. IGW(IX)	2530	1442.1	57%	600	120	0.20						
	7041.1	5990	85%	222.22	200	0.20						
	6000	2100	35%	80 000	4000	0.05						

nergy **x 10**¹⁴ <u>'ower</u> V 10 ⁹ W)

Efficiency = <u>useful energy</u> total input

> Useful = Efficiency x input

> > Input = <u>useful</u> efficiency

			f		Frequency			Hz
9	9 $V = f \times \lambda$				Wavelength			m
		•	v		Wave Speed			m/s
f		λ	v		f	λ	v	
		0.3	7			1500	400)
		0.4	5			7.5 × 10⁻ ⁷	30 000	000
25			256		525		215	5
450			330		7 × 10 ¹⁴		30 000	000
2		12			1.2	256		
125		20			360 000	0.0004		

- A. Calculate the speed of a water wave with a wavelength of 10m and a frequency of 0.25Hz.
- B. The speed of sound is 340m/s. What is the wavelength of a sound wave with a frequency of 256Hz?
- C. All electromagnetic waves travel at the same speed: 3.0×10⁸m/s. What is the frequency of green light, having a wavelength of 540nm?

		f	Frequency			Hz			
9 '	$V = f \times \lambda$	λ	Wavelength			m			
	-	v	Wave Speed	Wave Speed					
f	f λ		f	λ	v				
23.3	0.3	7	0.27	1500	400)			
35.8	0.4	5	4 x 10 ¹³	7.5 × 10 ⁻⁷	30 000	000			
25	10.24	256	525	0.41	215	; ;			
450	0.73	330	7 × 10 ¹⁴	4.29 x 10 ⁻⁸	30 000	000			
2	12	24	1.2	256	307.2	2			
125	20	2500	360 000	0.0004	144	4			

Wave Speed a. 1.5 W b. 3.166.67 s c. 43200 J

 $V = f \times \lambda$

 $f = \frac{V}{\lambda}$

λ= <u>V</u> f

			-	a	l D	istance		m
10 V = <u>d</u>			<u>d</u>	t	T	ime		S
		t	ν	7 V	/ave Speed		m/s	
d		t	v		-	d	t	v
		300	500				20	17
		0.25	80				10	15
30 0	00		750			1062		64
10 6	680		445			336		14
144 000		720				500	25	
211	2	6				59	0.05	

			-	G	1	Dis	stance		m
10		V =	<u>d</u>	t	L /	Tir	ne		S
			t	V	,	Wa	ave Speed		m/s
d	d t						d	t	v
150 (150 000		500				340	20	17
20		0.25	80				150	10	15
30 0	00	40	750				1062	16.59	64
10 6	680	24	445				336	24	14
144 (144 000		342.86	5			500	25	20
211	12	6	352				59	0.05	1180

V = <u>d</u> t

d = V x t

t = <u>d</u> V

				d	Dis	stance Moved in	n Directior	n of For	се	m
11	V	V = F x d		F	Fo	rce				Ν
			-	W	Wo	ork Done				J
d	d F			W		d	F		W	
	50			300			12	5	100 0	00
		8		120			200)	612	D
1.5				128		135			405	0
150			30	36 000		0.003			6	
12		5				0.5	750)		
2.5		50				3.75	7.2)		

- A. Calculate the work done when a box is pushed 20m against 7.0N of friction.
- B. What is the force if 24J is needed to move 6.0m?
- C. It takes 30MJ to fire a sounding rocket that weighs 750N. How high does the rocket go?

				d	Dis	stance Moved in	n Direction of For	ce	m
11	V	V = F x d		F	Fo	rce			Ν
			_	W	Wo	ork Done			J
d	d F			W		d	F	W	
6	6 50			300		800	125	100 0	00
15		8		120		30.6	200	612	0
1.5		85.3		128		135	30	405	0
150		240	36	36 000		0.003	2000	6	
12		5		60		0.5	750	37	5
2.5		50		125		3.75	7.2	27	

Work Done a. 140 J b. 4 N c. 4 x 10 ⁴ m

W = F x d

F = Wd

d = <u>W</u>

F

	D	F		E	3	Energy Transferr	ed		J
12	Ρ	= <u> </u>		ŀ	5	Power	W		
		τ		t	Ļ	Time	S		
E		Р		t		Ε	Р	t	
		50		3			24	54.2	
		1000	1	5			120.4	7.3	
4800			1	20		842 240		175	
7440			1	4		4650		12.4	
96		3				1311	43		A. C
110		550				66 500	536		B. F

A. Calculate the power of a torch when the battery's chemical energy store empties by 45J in 30s.

- B. A rower develops a power of 600W. How long will the 1 900 000J of chemical energy in a Mars bar allow them to row?
- C. A mobile phone has an average power of 0.50W. How much chemical energy must be stored in the battery if it can power the phone for an entire day?
- A. Calculate the power of a machine that does 700J of work in 35s.
- B. How long does it take a machine rated at 250W to do 75J of work?
- C. A car develops a power of 20kW when driving along a motorway. If it is driven for 2 hours, how much work does the car do against air resistance?

- A. Calculate the energy transferred by a 6.0W light bulb in 60s.
- B. How long will a 50W heater take to deliver 200J of energy?
- C. What is the power of a shower that delivers 3.7MJ of energy in 7.0 minutes?

	D – E			E	Energy Transferred		J				
12	P	- <u>-</u>		Р	Power	Power					
		τ		t	Time			S			
Ε		Р	t	-	Ε	Р		t			
150		50	3	3	1300.8	24	5	54.2			
1500	0	1000	1:	5	878.92	120.4		7.3			
4800		40	12	20	842 240	4812.8		175			
7440		531.4	14	4	4650	375	1	2.4			
96		3	3	2	1311	43	3	0.49			
110		550	0.	2	66 500	536	12	4.07			

Power & Energy a. 1.5 W b. 3.166.67 s c. 43200 J Power & Work a. 20 W b. 0.3 s c. 2 400 000 J (2 400 KJ) **Energy Transferred & Power** a. 360 J b. 4 s c. 8809.52 W

Ρ

t = <u>E</u> $\mathbf{E} = \mathbf{P} \mathbf{x} \mathbf{t}$

P = <u>E</u> t

					d	Dis	stance Normal to th	e Force		m	1	
13 M = F x d			I	F Force								
				Λ	Л	Мо	Moment of a Force					
d		F		М			d	F	M			
		5	1	5				700	600			
		8	4	.8				250	75			
1.2			36	60			0.6		480			
9			8	1			1.75		280			
0.1		45					6.4	6000				
0.3		1400					0.2	900				

- A.Calculate the moment of a force of 30N acting a distance of 0.40m from a pivot.
- B.A moment of 4.5Nm is balanced by a force acting 0.90m from the pivot. What is the size of the force?
- C.A crane supports a force of 280kN which causes a moment of 1.4×10⁴Nm. How long is the jib?

				6	<i>i</i> [Dis	tance Normal to th	e Force		m	
13 M		/l = F x d		F	F Force						
					1 N	Moment of a Force					
d		F	Ν	М			d	F	М		
3		5	1	5			0.86	700	600		
6		8	4	.8			0.3	250	75		
1.2		300	36	60			0.6	800	480		
9		9	8	81			1.75	160	280		
0.1		45	4	.5			6.4	6000	38 40)0	
0.3		1400	4	20			0.2	900	180		

Moment of a Force a. 12 Nm b. 5 N c. 0.05 m

> F = <u>M</u> d

d = <u>M</u> F

 $M = F \times d$

	14 $\mathbf{E} = \mathbf{V} \mathbf{x} \mathbf{Q}$		Q	С	harge			С		
14			E	E	Energy Transferred					
					P	Potential Difference				
Q		E		V		Q	E	V		
		16800	7	734			0.23	15.1	1	
		500 000	24	2400			175 000	182	5	
2.4				3		785		5		
3				17		4.3		1.5)	
27		15				74	239			
0.6		72				30	600			

- A.Calculate the energy transferred by 4.0C in 6.0s.
- B.How much charge must flow through 8.0V to do 4.0J of work?
- C.A spark transfers 0.20µC of charge doing 0.040J of work what was the p.d.?

			Q	C	Charge						
14	14 $\mathbf{E} = \mathbf{V} \times \mathbf{Q}$		E	Er	Energy Transferred						
					P	Potential Difference					
Q	-	Ε		V		Q	Ε	V			
22.89)	16800	7	34		0.015	0.23	15.1	1		
208.3	33	500 000	24	2400		95.89	175 000	182	5		
2.4		7.2		3		785	3925	5			
3		51	1	7		4.3	6.45	1.5	,		
27		15	0	0.56		74	239	3.23	5		
0.6		72	12	220		30	600	20			

Electrical energy											
transferred											
a. 24 J											
b. 0.5 C											
c. 200 000 V											

 $\mathbf{E} = \mathbf{V} \mathbf{x} \mathbf{Q}$

Q = <u>E</u> V

V = <u>E</u> Q

			Q	Cł	narge			C		
15 Q = I x t			Ι	Сι	urrent			A		
			t	Tir	Time					
Q		Ι	t		Q	Ι		t		
		3	57			0.015		107		
		13	60			10.2		25.6		
180			18		0.0155		0.	0075		
0.6			36		10.8		Ę	54.2		
160		0.4			0.50	0.04				
40		0.7			560	3.2				

- A. Calculate the charge carried by a current of 2.0A in 6.0s.
- B. How long will it take a current of 10A to transfer 200C of charge?
- C. What current flows from a mobile phone's battery if it transfers 300C per hour?

			Q	Ch	arge			C		
15	C	l = x t	Ι	Cu	Current					
			t	Tin	Time					
Q		Ι	t		Q	Ι		t		
171		3	57		1.61	0.015		107		
780		13	60		261.12	10.2		25.6		
180		10	18		0.0155	2.07	0.	0075		
0.6		0.017	36		10.8	0.199	5	54.2		
160		0.4	400		0.50	0.04	1	2.5		
40		0.7	57.14		560	3.2		175		

Charge Flowa.12Cb.20 sc.0.83 A

 $\mathbf{Q} = \mathbf{I} \mathbf{x} \mathbf{t}$

I = <u>Q</u> T

T = <u>Q</u> I

				C	Current						
16 V = I X R			l	7 P	Potential Difference						
			F	R R	Resistance						
Ι	V	ŀ	R	-	Ι	V	R				
	9		3			230	17				
	2	12	20			230	19 00	0			
0.5		1	8		450		33				
0.25		1	.2		0.025		1300)			
2	6				0.05	350					
3	18				32	42 000					

- A. Calculate the potential difference across a 3.0Ω resistor with 4.0A flowing through.
- B. What is the resistance of a 230V lamp with 0.25A flowing in it?
- C. A $4.7k\Omega$ resistor is connected to a 1.5V cell. How much current flows?

				1	′ (Cu	rrent			Α	
16	V	/ = I X R	l	/ F	Potential Difference						
			F	? F	Resistance						
Ι		V		R			Ι	V	R		
3		9		3			13.5	230	17		
0.01	7	2	12	20			0.012	230	19 00	0	
0.5		9	1	8		Ĩ	450	14 850	33		
0.25		0.3	1	.2			0.025	32.5	1300)	
2		6		3		ĺ	0.05	350	700	0	
3		18		6			32	42 000	1312	.5	

<u>Ohm's Law</u> a. 12 V b. 920 Ω c. 0.0032 A (3.2 x 10⁻⁴ A)

 $V = I \times R$

R = <u>V</u>

 $I = \frac{V}{R}$
					I	Cu	rrent			Α	
17	Ρ	$P = I \times V$		I	D I	Electric Power					
					7	Potential Difference					
Ι		Р	I	V			Ι	Р	1	/	
		9000		2				15000	2	50	
		55	0	.5				24 000	1	2	
4		9					0.05	225			click nere to
6		225					850	17000			equation
1.4				3			6.1		23	30	
0.2			1.	25			1.2		5.	13	

here for

- A. Calculate the power of a 230V lamp with 0.25A flowing in it.
- B. What p.d. is needed across a 0.040W LED to cause a current of 0.020A?
- C. A 3kW kettle is connected to the mains. How much current will flow?

 					_					_
				Ι	Cu	rrent			Α	
17	Ρ	$= I \times V$		Р	Ele	ectric Power			W	
				V	Po	tential Difference			V	
Ι		Р	V			Ι	Р	V	7	
4500)	9000	2			60	15000	25	0	Electrical I P.C
110		55	0.5			2000	24 000	12	2	a. 57
4		9	2.25			0.05	225	45	00	b. 2 c. 13.
6		225	37.5	5		850	17000	2	0	
1.4		4.2	3	1		6.1	1403	23	0	P = I
0.2		0.25	1.25			1.2	6.16	5.1	13	

Power & <u>D</u> '.5 W 2 V .04 A

хV

I = <u>P</u> V

					I (Cu	rrent			Α	
18	P	$P = I^2 \times R$		I	P [Ele	ctrical Power			W	
						Re	sistance			Ω	
Ι		Р	R				Ι	Р	R		
		36	4					2.4	60		
		6	24	ļ				52.4	1000		
0.8			15	<u>,</u>			0.21		260		
0.4			2				0.004		33 × 10	6	
2		1280					3.2	4813			
4		53					0.89	375			

- A. Calculate the power of a 16 Ω resistor with 4.0A flowing through it.
- B. What is the resistance of a 1200W heater when 3A flows?
- C. How much current flows through a 2.0mW LED with a resistance of 0.50 Ω ?

				I	Сι	urrent			Α		
18 P = $I^2 \times R$			P	P Electrical Power							
					Re	esistance			Ω		
Ι		Р	R			Ι	Р	R			
3		36	4			0.2	2.4	60			
0.5		6	24	ŀ		0.23	52.4	1000			
0.8		9.6	15	;		0.21	11.5	260			
0.4		0.32	2			0.004	52 800	33 × 10	6		
2		1280	32	0		3.2	4813	470.02			
4		53	3.3	81		0.89	375	4.73			

Electrical Power &								
Resistance								
a. 256 W								
b. 133.3 Ω								
c. 0.2 A								

 $\mathbf{P} = \mathbf{I}^2 \mathbf{x} \mathbf{R}$

 $R = \frac{P}{l^2}$ $I = \sqrt{(P)}$ R

			ρ	De	ensity			kg/m ³
19	p = <u>m</u>	<u>)</u>	m	Ma	ISS			kg
	V	V	Vo	lume		m ³		
ρ	m	I	1		ρ	т		V
	160	0.0	06			500		0.185
	10 000	0.	.5			0.5		4.1
3500		3.3	38		11 × 10 ³			0.032
685		5.	.3		1.2		3.	5 × 10 ⁵
7700	60				2.1 × 10 ⁹	8.4		
1900	0.0073				8.52 × 10 ³	613		

- A. Calculate the density of a piece of metal, mass 3000kg and volume 0.70m³.
- B. What is the volume of 65kg of air with a density of 1.1kg/m³?
- C. What is the mass of 3.0cm³ of salt water if it has a density of 1 100kg/m³?

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	p = <u>m</u> V	<u>1</u>	ρ m V	De Mi Vo	ensity ass blume		kg/m ³ kg m ³	<u>Density</u> a. 4.23 x 10 ³ Kg/m ³ b. 59.1 m ³
2 666.671600.062702.705000.18520 00010 0000.5 0.12 0.54.1350011 8303.3811 × 10 ³ 343 7500.0326853630.55.31.23.4 x 10 ⁻⁶ 3.5 × 10 ⁵ 7700600.00782.1 × 10 ⁹ 8.44 x 10 ⁻⁹ 19000.00733.84 x 10 ⁻⁶ 8.52 × 10 ³ 6130.072	ρ	m	I I	7		ρ	m	V	(3.3 x 10 ⁻³ Kg or 3.3g)
20 00010 0000.50.120.54.1350011 8303.38 11×10^3 343 7500.0326853630.55.3 1.2 3.4×10^{-6} 3.5×10^5 7700600.0078 2.1×10^9 8.4 4×10^{-9} 19000.0073 3.84×10^{-6} 8.52×10^3 613 0.072	2 666.67	160	0.0	06		2702.70	500	0.185	
3500 $11\ 830$ 3.38 11×10^3 $343\ 750$ 0.032 685 3630.5 5.3 1.2 $3.4\ x\ 10^{-6}$ 3.5×10^5 7700 60 0.0078 2.1×10^9 8.4 $4\ x\ 10^{-9}$ V 1900 0.0073 $3.84\ x\ 10^{-6}$ 8.52×10^3 613 0.072	20 000	10 000	0.	.5		0.12	0.5	4.1	
685 3630.5 5.3 7700 60 0.0078 1900 0.0073 3.84×10^{-6} 8.52 × 10 ³ 613 0.072	3500	11 830	3.3	38		11 × 10 ³	343 750	0.032	
770060 0.0078 2.1×10^9 8.4 4×10^{-9} V1900 0.0073 3.84×10^{-6} 8.52×10^3 613 0.072	685	3630.5	5.	.3		1.2	3.4 x 10 ⁻⁶	3.5 × 10 ⁵	p = m
1900 0.0073 3.84×10^{-6} 8.52×10^3 613 0.072	7700	60	0.00)78		2.1 × 10 ⁹	8.4	4 x 10 ⁻⁹	
	1900	0.0073	3.84 >	(10 -6		8.52 × 10 ³	613	0.072	$m = n \times V$

V = <u>m</u> P

		е	Extension	m
20	F=kxe	F	Force Exerted	Ν
		k	Spring Constant	N/m

е	F	k	е	F	k
	900	30		820	0.04
	0.5	40		10.4	28
		2.5	0.037		43
0.8		400	0.04		30
180	60		79	16 000	
0.25	10		3.4 × 10 ⁻³	40	

- A. Calculate the force needed to extend a spring with a spring constant of 20N/m by 0.020m.
- B. If a spring stretches by 0.020m when 26N is attached, what is the spring constant?
- C. A car's suspension has *four* springs, *each* with a spring constant of 1.2×10⁵N/m. By how much will the car sink when an 900N passenger gets into the car?

		е	Extension	m
20	F=kxe	F	Force Exerted	Ν
		k	Spring Constant	N/m

Force & Extension of a spring a. 0.4 N b. 130 N/m c. 1.87 x 10 ⁻³ m (1.87 mm)

е	F	k		
30	900	30		
0.0125	0.5	40		
3	7.5	2.5		
0.8	320	400		
180	60	0.33		
0.25	10	40		

е	F	k
20 500	820	0.04
0.37	10.4	28
0.037	1.591	43
0.04	1.2	30
79	16 000	202.53
3.4 × 10 ⁻³	40	11 764.71

F = **K x e**

K = <u>F</u>

e

e = <u>F</u> k

			A A	Area of Surface		m ²		
21	$P = \underline{F}$		F F	Force		N		
	A		P F	Pressure		Pa	a	
A	F	P		A	F	P	Γ	
	500 000	2400			175 000	1825		
	160	0.4			40	0.7		C
180		60		79		316		
57		3		107		0.015		
200	16000			53	440			
180	18			36	0.6			

- A. Calculate the pressure exerted by a brick weighing 56N and resting on an area of 0.02m².
- B. What is the area when a pressure of 75Pa is exerted by a force of 15N?
- C. A drawing pin has a surface area of 0.10mm² and exerts a pressure of 2GPa. What force is being applied to the pin?

				A	Are	ea of Surface			m²
21		P = <u>F</u>		F	Fo	rce			Ν
<u> </u>		Α		Р	Pre	essure			Pa
Α		F		D		A	F		Р
208.3	3	500 000	24	00		95.89	175 000	18	325
400		160	0	.4		57.14	40	0).7
180		10 800	6	0		79	24964	3	16
57		171		3		107	1.61	0.0	015
200		16000	8	30		53	440	8.	30
180		18	0	.1		36	0.6	0.	017

Pressure a. 2800 Pa b. 0.2m² c. 200 N

> P = <u>F</u> A

F = P x A

A = <u>F</u> P

				а	Acc	eleration	m/s²
22	2	~ ² 2 >		d	Dist	ance	m
ZZ	\mathcal{V}^{-}	$-u^{-} = 2$	$-u^{-} = 2 \times u \times u$		Fina	I Velocity	m/s
				и	Star	t Velocity	m/s
а		d		V		u	
		100		40		0	
		45		15		3	
7				5		2	
1.3				10		6	
1		250				20	
1.6		1.2				0.8	
4.5		8		11			
0.6		383		28			

				а	Acc	eleration	m/s	,2
00	2	2 0	7	d	Dist	ance	m	
22	v^2	$-u^{2} = 2 >$	$\langle a \times d \rangle$	v	Fina	al Velocity	m/s	; ;
				и	Star	t Velocity	m/s	S
а		d		V		u		
800		100		40		0		
2.4		45		15		3		
7		1.5		5		2		
1.3		24.62		10		6		
1		250		900		20		
1.6		1.2		4.35		0.8		
4.5		8		11		7		
0.6		383		28		18.0 [,]	1	

$$v^{2} - u^{2} = 2 x a x d$$

 $\frac{v^{2} - u^{2}}{2 x a} = d$
 $\frac{v^{2} - u^{2}}{2 x a} = a$
 $2 x d$

v = v [(2 x a x d) + u²]

 $u = v [v^2 - (2 x a x d)]$

				F	Force		Ν
		(mv -	-mu	mv	Final Mo	omentum	m/s²
23		$F = \frac{(mv)}{t}$	<i></i>	ти	Start Momentum		m/s²
				t	Time		S
F		mv	ז	пи		t	
		55		10		0.05	
		31500	13	500		20	
40			1	30		0.5	
0.78	3			70		18	
95 50)0	68960				0.65	
5100	C	38948				3	
15		2150	3	344			
1.8		5.13	1	.83			

				F	Force		Ν	
00		(<i>mv</i> –	$F = \frac{(mv - mu)}{t} \qquad \frac{mv \text{Final N}}{mu} \text{Start N}$		Final Mo	omentum	m/s²	
23	$F = \frac{t}{t}$				$\frac{1}{t}$		Start Mo	start Momentum
				t	Time		S	
F		mv	1	ти		t		
900)	55		10		0.05		
900)	31500	13	3500		20		F =
40		150		30		0.5		
0.78	}	84.04		70		18		
95 50)0	68960	68	385		0.65		t =
5100)	38948	26	648		3		
15		2150	3	344		120.4] <i>(</i>	Fv+
1.8		5.13	1	.83		1.83] (ιλί

(F x t) + *mu* = *mv*

mu = *mv* - (F x t)

					-			
				Ι	Curren	t		Α
24				Ε	Energy			J
Z 4	$E = V \times I$		ΧŢ	V	Potenti	al Difference		V
				t	Time		ę	S
Ι		E		V		t		
		0.6		240		10 × 10 ⁻⁶		
		54 300		11.9		1200		
0.25)			5		72 × 10 ³		
1.5				30		120		
40 × 1	0-3	8.6				180		
2.55)	195				17		
50 × 1	0-3	9.94 × 10 ⁵		230				
3.5		1890		12				

				Ι	Current	t	Α
24	$24 \mid E = V \times I >$			E	Energy		J
Z 4			ΧŢ	V	Potenti	al Difference	V
			t	Time		S	
Ι		E		V		t	
250		0.6		240		10 × 10 ⁻⁶	
3.80)	54 300		11.9		1200	
0.25)	90 000		5		72 × 10 ³	
1.5		5400		30		120	
40 × 1	0-3	8.6		4.78		180	
2.55)	195		4.49		17	
50 × 1	0-3	9.94 × 10 ⁵		230		86 434.78	
3.5		1890		12		45	

E = V x I x t

 $\frac{\mathbf{E}}{\mathbf{t} \mathbf{x} \mathbf{I}} = \mathbf{V}$

			Ι	Current		A]
05	- F		F	Force on a Conductor in Magnetic Field	na	N	
23	r =	B×I×l	l	Length		m	
			B	Magnetic Flux Density		N/Am	
	I	F		1	B		_
		18		7.1	0.19		
		0.09		0.05	0.33		
	8.0			0.40	0.20		
	2.1			0.30	0.05		
0).19	0.4			1.5		
	4.3	12			0.07		Click here for
	12	8.4		4.7		r	earranged equation
	5	0.024		0.06			

						-
			Ι	Current		A
			F	Force on a Conductor in	na	N
25 E -				Magnetic Field		
23	r =	$B \times I \times l$	I	Length		m
			В	Magnetic Flux Density		N/Am
	Ι	F		1	В	
1	3.34	18		7.1	0.19	
4	5.45	0.09		0.05	0.33	
	8.0	0.64		0.40	0.20	
	2.1	0.0315		0.30	0.05	
0).19	0.4		1.40	1.5	
	4.3	12		39.87	0.07	
	12	8.4		4.7	0.15	
	5	0.024		0.06	0.08	

 $F = B \times I \times l$

 $l = \frac{F}{B \times I}$

 $B = \frac{F}{I \times I}$

 $I = \frac{F}{I \times B}$

			N _P	Number of Turns or	n the Primary Coil			
00		$V_{\rm p}$ $N_{\rm p}$	N _S	Number of Turns or	n the Secondary Coil			
20		$\frac{P}{V_c} = \frac{P}{N_c}$	V _P	Potential Difference	e in the Primary Coil			
	V _S IV _S		V _S	Potential Difference in the Secondary Coil				
V _p		V _s	$N_{ m p}$	N _s	Step-up or step-down?			
100		300	20					
400 00	00	25 000	40					
230		7.2		18				
12		240		50				
120			1000	250				
24			450	150				
		28	180	50				
		62	4600	230				

			N _P	Number of Tur	rns on the Primary Coil				
00		$V_{\rm p}$ $N_{\rm p}$	$N_{\rm p}$ $N_{\rm s}$ Number of Turns on the Secondary C						
20	$\frac{P}{V_{\rm s}} = \frac{P}{N_{\rm s}}$		V _P	Potential Differ	Potential Difference in the Primary Coil				
			V _S	Potential Differ Coil	Potential Difference in the Secondary Coil				
V _p		Vs	N _p	N _s	Step-up or step-down?				
100		300	20	60	UP				
400 00	00	25 000	40	2.5	DOWN				
230		7.2	575	18	DOWN				
12		240	2.5	50	UP				
120		30	1000	250	DOWN				
24		8	450	150	DOWN				
100.8	8	28	180	50	DOWN				
1240)	62	4600	230	DOWN				

<u>Vs</u> = <u>Ns</u> Vp Np <u>Vp</u> = <u>Np</u> Vs Ns Vp = Np x VsNs Vs = Ns x VpNp $Np = \underline{Vp} x Ns$ Vs Ns = Vs x NpVp

	$27 V_{1} \times I_{2} = V_{1} \times I_{2}$	I_P	Current in the Primary Coil	Α
07	$V \times I = V \times I$	I_S	Current in the Secondary Coil	Α
27	$v_{\rm p} \times I_{\rm p} = v_{\rm s} \times I_{\rm s}$	V_P	Potential Difference of the Primary Coil	V
		V_S	Potential Difference of the Secondary Coil	V

V _p	V _s	I _p	I _s	Step-up or step-down?
	1003	3.1	1.3	
	31	0.5	3.45	
922		0.15	2.1	
500	5		2	
110	230		4.1	
128000	230		5.0	
6	24	3		
30	40	20.0		

	$27 V_{\rm p} \times I_{\rm p} = V_{\rm s} \times I_{\rm s}$	I_P	Current in the Primary Coil	Α
07	$V \times I = V \times I$	I_S	Current in the Secondary Coil	Α
$27 V_{\rm p} \times I_{\rm p} = V_{\rm s}$	$v_{\rm p} \times I_{\rm p} = v_{\rm s} \times I_{\rm s}$	V_P	Potential Difference of the Primary Coil	V
		$I_{S} \begin{array}{ c c c } & I_{P} & \text{Current in the Primary Coil} \\ \hline & I_{S} & \text{Current in the Secondary Coil} \\ \hline & V_{P} & \text{Potential Difference of the Primary Coil} \\ \hline & V_{S} & \text{Potential Difference of the Secondary Coil} \\ \hline \end{array}$	V	

V	V	I	I	Step-up or
v p	S	* p	¹ S	step-down?
420.6	1003	3.1	1.3	UP
213.9	31	0.5	3.45	DOWN
922	65.86	0.15	2.1	DOWN
500	5	0.02	2	DOWN
110	230	8.57	4.1	UP
128000	230	0.0089	5.0	DOWN
6	24	3	0.75	UP
30	40	20.0	15	UP

 $Vp \times Ip = Vs \times Is$ $Vp = \frac{Vs \times Is}{Ip}$ $Ip = \frac{Vs \times Is}{Vp}$

				θ	Change in Temperature		°C	
20	$ _{\Gamma}$ _			E	Energy Transfe	erred	J	
20	L =	πχεχ	< 0	т	Mass		kg	
				С	Specific Heat Capacity		J/kg°C	
E	1	т			С		θ	
		2	4200				80	
		100	2100				50	
720	00			900			4	
720	00			390			4	
160	00	0.3					35	
9 000 000		15				17		
450	000	5.8	1		30			
198	000	8.9		8	50			

					θ Change in Temperature		°C	
28	E =	$m \times c >$	< 0	E m	Mass	iieu	J ka	
				C	Specific Heat Capacity		J/kg°C	
E m				(C		θ	
672 000		2	4200				80	
10 500 000		100	2100				50	
720	00	2	900				4	
720	00	4.62	390			4		
160	00	0.3		152.38			35	
9 000 000		15	35 294.12		35 294.12 17		17	
450	450 000 5.8			130		59	96.83	
198	000	8.9		850			6.17	

E =	m	Χ	С	Χ	θ
-----	---	---	---	---	---

схт

				E	E		J				
29 <i>E</i>		$= m \times L$		m	m Mass						
			-	L	S	Specific Latent Heat					
Ε		т	j	L		E	L	,			
		70	14	00			0.018	2.3 ×	: 10 ⁶		
		5	334 :	× 10 ³			0.82	3.3 ×	: 10 ⁵		
80			5(00		512		85	40		
195 8	300		11	00		115 000		22.6 :	× 10 ³		
634 (000	2.3				756	0.03				
950)	0.38				1.05 × 10 ⁷	167				

				Ε	E	nergy Transferre		J	
29	E :	= m	$\times L$	т	М	ass			kg
_•				L	S	pecific Latent He	at		J/kg
E		т	1	L		E	т	L	,
98 000		70	14	1400		41 400	0.018	2.3 ×	: 10 ⁶
1 670	000	5	334 × 10 ³			270 600	0.82	3.3 ×	: 10 ⁵
80		0.16	5(00		512	0.06	854	40
195 8	300	178	11	1100		115 000	5.88 22.6		× 10 ³
634 000 2.3 275		275 6	52.17		756 0.03		25	200	
950)	0.38	25	500		1.05 × 10 ⁷	167	62 87	74.25

 $E = m \times L$

<u> E </u>= m L

			P_1	Pressure (Start)	Ра
20	ת	$\times U = D \times U$	P_2	Pressure (End)	Ра
30	r ₁	$\times v_1 - r_2 \times v_2$	V_1	Volume (Start)	m ³
			V_2	Volume (End)	m ³
P	1	V_1		P_2	V_2
24	1	600		96	
62	.8	50		1000	
3.	5	90			10.5
10	4	5.5			5.9
120	00			325	25
14 0	000			10 000	15
		20		4 × 10 ⁵	5
		8 × 10 ⁻⁴		101 × 10 ³	2 × 10 ⁻⁴

			P_1	Pressure (Start)	Ра
20	л	$\times U = D \times U$	P_2	Pressure (End)	Ра
30	r ₁	$\times v_1 - r_2 \times v_2$	V_1	Volume (Start)	m ³
			V_2	Volume (End)	m ³
P	1	<i>V</i> ₁		<i>P</i> ₂	V_2
24	1	600		96	150
62.	62.8 50			1000	3.14
3.	5	90		30	10.5
10	4	5.5		96.95	5.9
120	00	6.77		325	25
14 000 10.71		10.71		10 000	15
100 000 20			4 × 10 ⁵	5	
25 2	50	8 × 10 ⁻⁴		101 × 10 ³	2 × 10 ⁻⁴

V1 = <u>P2 x V2</u> P1

 $P2 = \frac{P1 \times V1}{V2}$

V2 = <u>P1 x V1</u> P2

						Energy Transf	erred		J		
21	31 $E = \frac{1}{2} \times k \times e^2$			е	E	Extension					
		$-\frac{1}{2} \wedge r$	(× e	k	S	Spring Constant					
E	-	е	k	k E e k				k			
		5	380				0.12	53.6			
		0.015	30 000				0.032	0.032			
320			160			3800		90			
35			1100			17.3		15 60	0		
250 0		0.1				67 000	7.4				
0.3		0.2				265	3.8 × 10 ⁻³				

	$E = \frac{1}{2} \times k \times c^2$		E	E	Energy Transferred				
21			е	E	Extension				
		$E = \frac{1}{2} \times \kappa \times e$		k	S	Spring Constant			
Ε		е	k			E	е	k	
475()	5	380			0.39	0.12	53.6	
3.38		0.015	30 000			1.64 x 10 ⁻⁵	0.032	0.032	
320		2	160			3800	9.19	90	
35		0.25	1100			17.3	0.047	15 60	C
250		0.1	50 000			67 000	7.4	2447.0	4
0.3		0.2	15			265	3.8 × 10 ⁻³	36 703 60)1.1

0.5 x k

K = 2 x (<u>E</u>) e²

32	$p = h \times \rho \times g$	ρ	Density of Liquid	kg/m³
		g	Gravitational Field Strength	N/kg
		h	Height of Column	m
		р	Pressure due to a Column of Liquid	Ра

ho	h	р
900	0.20	
900	0.40	
900	0.60	
400	5	
500	5	
700	5	

ρ	h	р
	1.6	11 200
	3.2	38 400
	0.07	437
1030		773 000
820		205 000
13500		4050

These calculations taken place on Earth where g = 10

32	$p = h \times \rho \times g$	ρ	Density of Liquid	kg/m ³
		g	Gravitational Field Strength	N/kg
		h	Height of Column	m
		р	Pressure due to a Column of Liquid	Pa

ho	h	р
900	0.20	1800
900	0.40	3600
900	0.60	5400
400	5	20 000
500	5	25 000
700	5	35 000

ρ	h	р
700	1.6	11 200
1200	3.2	38 400
624.29	0.07	437
1030	75.05	773 000
820	25	205 000
13500	0.03	4050

p = h x *p* x g g =<u>p</u> h x *p*

> h = <u>p</u> g x *p*

 $p = \underline{p}$ h x g

These calculations taken place on Earth where g = 10

GCSE Physics Calculations Practice (Grade 4)

- 1. If a force of 13N is applied over a distance of 71m, how much work is done?
- 2. A frog covers 17metres in 34 seconds, what is its speed?
- 3. If a circuit has a potential difference of 6V and a current of 4A what is the circuit's resistance?
- 4. If the force applied to a spring is 300N and the spring extends by 2metres, what is the spring constant?
- 5. A 200W toaster takes 2 minutes to toast some bread. How much energy was used?
- 6. A 2kg box was lifted onto a 3metre shelf (g =10N/kg) how much Gravitational potential energy has it gained?

GCSE Physics Calculations Practice (Grade 4)

- 1. If a force of 13N is applied over a distance of 71m, how much work is done? 923 J
- 2. A frog covers 17metres in 34 seconds, what is its speed? 0.5 m/s
- 3. If a circuit has a potential difference of 6V and a current of 4A what is the circuit's resistance?

1.5 Ω

4. If the force applied to a spring is 300N and the spring extends by 2metres, what is the spring constant?

1500 N/m

5. A 200W toaster takes 2 minutes to toast some bread. How much energy was used?

2.4 x 10⁵ J

6. A 2kg box was lifted onto a 3metre shelf (g =10N/kg) how much Gravitational potential energy has it gained?

60 J

- 7. A 110kg rugby player runs at a velocity of 6 metres per second, what is his momentum?
- 8. A 12kg dog has an acceleration of 2m/s², how much force was needed for this acceleration?
- 9. Usain Bolt has a mass of 90kg and runs at a velocity of 11m/s, what is his kinetic energy?
- 10.A washing machine uses a 3A current and runs on a potential difference of 230V, what is the power rating of the machine?
- 11.A lorry of mass 20 000kg produces a force of 30kN, calculate the acceleration.
- 12.A Bugatti covers 32km in 20minutes, what is its speed in a) m/s b) km/h?
- 13. How much does a 71kg girl weigh on the moon? (g=1.kN/kg)
- 14.A cricket ball of mass 200g travels at 20m/s, what is it's a) momentum b) kinetic energy?
- 15. How much work must be done to push a 1750kg car back home, a distance of 3.4km?

GCSE Physics Calculations Practice (Grade 6+)

- 1. If a force of 71 N is applied over a distance of 110m, how much work is done?
- 2. A frog covers 0.5 km in 25 seconds, what is its speed?
- 3. If a circuit has a potential difference of 6kV and a current of 400mA what is the circuit's resistance?
- 4. If the force applied to a spring is **316MN** and the spring extends by **0.2metres**, what is the spring constant?
- 5. A 0.34kW toaster takes 21 seconds to toast some bread. How much energy was used?
- 6. A 2g box was lifted onto a 300mm shelf (g =10N/kg) how much Gravitational potential energy has it gained?
- 7. A 150 000g rugby player runs at a velocity of 10km/h, what is his momentum?
- 8. A 15 000 000 mg dog has an acceleration of 4.5 m/s², how much force was needed for this acceleration?
- 9. Usain Bolt has a mass of 90kg and runs at a velocity of 30km/h, what is his kinetic energy?
- 10.A washing machine uses a 6000 mA current and runs on a potential difference of 0.4kV, what is the power rating of the machine?

GCSE Physics Calculations Practice (Grade 6+)

7810 J 1. If a force of 71 N is applied over a distance of 110m, how much work is done? 2. A frog covers 0.5 km in 25 seconds, what is its speed? 20 m/s 15000 Ω 3. If a circuit has a potential difference of 6kV and a current of 400mA what is the circuit's resistance? 1.58 x 10⁹ N/m 4. If the force applied to a spring is **316MN** and the spring extends by **0.2metres**, what is the spring constant? 7.14 KJ 5. A 0.34kW toaster takes 21 seconds to toast some bread. How much energy was used? 6. A 2g box was lifted onto a 300mm shelf (g =10N/kg) how much Gravitational potential energy has it g 0.006 J 7. A 150 000g rugby player runs at a velocity of 10km/h, what is his momentum 417 Kg m/S 8. A 15 000 000 mg dog has an acceleration of 4.5 m/s², how much force was needed for this acceleration? 6.75 x 10⁴ N Usain Bolt has a mass of 90kg and runs at a velocity of 30km/h, what is his kinetic energy? 9. 374.85J 10. A washing machine uses a 6000 mA current and runs on a potential difference of 0.4kV, what is the power 2400 W rating of the machine?

A car produces a driving force of 2000N. It experiences friction force from the ground of 500N and air resistance of 300N. what is the resultant force?	What equation links mass, force and acceleration?	A car of mass 400kg is accelerating at 5m/s ² . What is the driving force produced by the engine?	A man pushes a car with a force of 200N along a straight horizontal road. He manages to accelerate the car by 0.1m/s ² . Find the mass of the car.
A car accelerates from a velocity of 10m/s to a velocity of 25m/s in 15 seconds. What is the acceleration of the car?	What equation links change in velocity, time and acceleration?	A runner starts at rest and accelerates to a top speed of 10m/s. If he does this in 2 seconds, what is his acceleration?	What equation links weight, mass and gravitational field strength?

A car produces a driving force of 2000N. It experiences friction force from the ground of 500N and air resistance of 300N. what is the resultant force? 1200 N	What equation links mass, force and acceleration? F = m x a	A car of mass 400kg is accelerating at 5m/s ² . What is the driving force produced by the engine? 2000 N	A man pushes a car with a force of 200N along a straight horizontal road. He manages to accelerate the car by 0.1m/s ² . Find the mass of the car. 2000 kg
A car accelerates from a velocity of 10m/s to a velocity of 25m/s in 15 seconds. What is the acceleration of the car?	What equation links change in velocity, time and acceleration? $a = \Delta V$ t	A runner starts at rest and accelerates to a top speed of 10m/s. If he does this in 2 seconds, what is his acceleration? 5 m/s ²	What equation links weight, mass and gravitational field strength? W = m x g

Calculate the weight of car of mass 400kg on earth.	The gfs of Jupiter is 13N/Kg. What is the difference in weight between a man of 56kg on earth compared to Jupiter.?	An object of weight 40N is raised by a height of 0.4m. Calculate the work done in raising the object.	2000J of energy is transferred by a sprinter as he runs a distance of 100m. Calculate the force that is exerted by the sprinter as he is running.
What equation links power, energy and time?	400J of energy is transferred in raising an object in 1 minute. What is the power?	A car engine transfers 3000J in 20 seconds. What is the power generated by the engine?	A student of weight 500N transfers 2000J whilst running up some stairs. She reaches the top of the stairs in 3 seconds. How high are the stairs and what is her power?

Calculate the weight of car of mass 400kg on earth.	The gfs of Jupiter is 13N/Kg. What is the difference in weight between a man of 56kg on earth compared to Jupiter.?	An object of weight 40N is raised by a height of 0.4m. Calculate the work done in raising the object.	2000J of energy is transferred by a sprinter as he runs a distance of 100m. Calculate the force that is exerted by the sprinter as he is running.
3920 N	179.2 N	16 J	200 N
What equation links power, energy and time?	400J of energy is transferred in raising an object in 1 minute. What is the power?	A car engine transfers 3000J in 20 seconds. What is the power generated by the engine?	A student of weight 500N transfers 2000J whilst running up some stairs. She reaches the top of the stairs in 3 seconds. How high are the stairs and what is her power?
P = <u>E</u> t	6.67 W	150 W	4 m