<u>Mark Scheme</u>

Q1.

Answer	Acceptable answers	Mark
axes labelled correctly With label or unit (1) correct shaped smooth curve (1) line does not reach zero activity (1)	activity / Bq / count rate ignore radioactivity time/ seconds/ any time unit	(3)

Q2.

Answer	Acceptable answers	Mark
D		(1)

Q3.

Question Number	Answer	Acceptable answers	Mark
(a)	B It is very ionising		(1)

Question Number	Ans	swer	Acceptable answers	Mark
(b)	A	decreases by 2 decreases by 4		(1)

Q4.

	Answer	Acceptable answers	Mark
(i)	Any two of: Gamma is a wave (1) Alpha is a helium nucleus (1) Alpha is charged (1) Alpha has a mass (1) Gamma penetrates further/ highly (1) Gamma weakly ionising (1) Gamma travels	Reverse arguments em radiation Gamma has no charge Gamma has no mass examples of penetrating power alpha highly ionising ignore vague comments eg stronger Ignore uses and	(2)

faster (1) dangers	
--------------------	--

Q5.

Question number	Answer	Additional guidance	Mark
(i)	Geiger-Müller tube	accept Geiger (counter) geiger (counter) GM (tube) gm(tube) accept any recognisable (phonetic) spelling	(1)

Answer	Additional guidance	Mark
any two from: keep a safe distance (1) point the source away from people (1) handle the source with tongs/at a distance (1) limit exposure time/return source to store (asap) (1) use shielding (1) use of gloves (1) use of mask (1) protective clothing (1) wear a film badge/monitor (1)	use of screen	(2)
	goggles	
	any two from: keep a safe distance (1) point the source away from people (1) handle the source with tongs/at a distance (1) limit exposure time/return source to store (asap) (1) use shielding (1) use of gloves (1) use of mask (1) protective clothing (1)	guidanceany two from:keep a safe distance (1)point the source away from people (1)handle the source with tongs/at a distance (1)limit exposure time/return source to store (asap) (1)use shielding (1)use of gloves (1)use of mask (1)protective clothing (1)wear a film badge/monitor (1)Do not credit

Question number	Answer	Additional guidance	Mark
(iii)	a description to include four from: take measurement without source (1) place source in front of/near/close to detector (1)	measure/account for background (count) DO NOT allow `inside'	(4)
	increase the distance (between source and detector) (1)	allow reverse argument by starting with detector long way away from source	
	measure distance (from source to detector) (1)		
	take reading from the screen/counter (1)		
	until reading gets to background value /constant value (1)	allow zero as constant value	
	use same time for each count (1) repeat / check when down to low values (1)	mention of (count) <u>rate</u>	

Q6.

Question Number	Answer	Acceptable answers	Mark
	A description including any four from:	ignore all references to electrons	(4)
	(there are) 89 particles in the nucleus (1)	(its) {mass/nucleon} number / RAM / A _r / A <u>is 89</u>	
	protons (1)	{atomic/proton} number / positive charge / Z <u>= 36</u>	
	(there are) 36 (protons) (1) neutrons (1) (there are) 53 (neutrons) (1)	Numbers must be correctly linked to gain credit e.g. 36 neutrons gets 1 mark (for neutrons)	
	i.e. 36 protons and 53 neutrons gains four marks	53 protons and 36 neutrons gains two marks (for protons and neutrons)	
		89 protons and neutrons gets 3 marks	
		(altogether there are) 89 protons and neutrons. 36 are protons gains 4 marks	

Q7.

Question Number	Answer	Acceptable answers	Mark
(i)	A protons	OR A neutrons	(3)
	B neutrons	B protons	
	C electrons	C electrons	8

Question Number	Answer	Acceptable answers	Mark
(ii)	12		(1)

Q8.

	Answer	Acceptable answers	Mark
(i)	any one of X-ray (machines) / smoke alarms/ nuclear/ radioactive waste (1)	nuclear weapons (tests) nuclear power plants (medical) tracers/technetium	(1)
(ii)	an explanation linking: comes from granite / rocks (1) none/ less of these (rocks) in some areas (1)	in some areas/Cornwall/Aber deen the second mark is dependent on the first.	(2)

Q9.

	Answer	Acceptable answers	Mark
(i)	does not emit (ionising) radiation / no (radioactive) decay	it is not radioactive	(1)
(ii)	^{Be} B 5		(1)
(iii)	^s Be A		(1)

Q10.

	Answer	Acceptable answers	Mark
(i)	🖾 A electron		(1)
(ii)	suggestion to include two of • the ionisation is different (1) • correct difference in ionisation (1) • the <u>masses</u> are different (1) • alpha is bigger than beta (1) • alpha hits more (air) particles (1) • alpha loses its energy in shorter distance (1)	alpha more ionising (than beta) scores 2 marks RA (heavier for bigger) RA RA IGNORE references to penetration	(2)

	Answer	Acceptable answers	Mark
(i)	D		(1)
(ii)	В		(1)

Q12.

Question Number	Answer	Additional guidance	Mark
	substitution (1) <u>1.6726 (x 10⁻²⁷)</u> 9.1094 (x 10 ⁻³¹)		(3)
	evaluation (1) 1836	Allow 1 mark for answers that round to 1.836 to any power of ten for this mark 1.836 x 10 ³ OR 1.80 x 10 ³ accept 1840 or any rounding of 1836.125	
	evaluation to 2 sf (1) 1800	1.8 x 10 ³ any number shown to 2 sf gets this mark	
		award full marks for the correct answer without working	

Q13.

	Answer	Additional guidance	Mark
(i)	260 (g)		(1) AO2

	Answer	Additional guidance	Mark
(ii)	(54 days is) 3 half-lives (1)	260 ÷ 2 (÷ 2) or 520 ÷ 2 ÷ 2 (÷ 2)	(2)
		18, 36, 54 (represents 3 half-lives) 54/18 = 3 (half-lives)	AO2
	65 (1)	ecf answer to 4ci ÷ 4	
		130 scores 1 mark	
		award full marks for the correct answer without working	

Q14.

Question number	Answer	Mark
<mark>(i)</mark>	434	(1)

Question number	Answer	Additional guidance	Mark
(ii)	34	allow 29 to 39	

Question number	Answer	Additional guidance	Mark
(iii)	Radioactive decay is a random process	allow because background count changes every time	(1)

Q15.

	Answer	Acceptable answers	Mark
(a)	A		(1)
(b)	axes labelled correctly With label or unit (1) correct shaped smooth curve (1) line does	activity / Bq / count rate ignore radioactivity time/ seconds/ any time unit	(3)

	not reach zero		
	activity (1)		
(c)(i)	Idea of 2 half-lives (1) 11 400 = 2×5700 Idea of halving activity twice (1) $0.55 \times 2 \times 2$ Calculation (1) 2.2 (Bq)	11 400 / 5700 = 2 2.2 (Bq) for three marks	(3)
(c)(ii)	 Explanation linking two of: Background radiation affects the measurement (1) Needs to be subtracted from readings (1) Background radiation is variable (1) Background radiation needs to be averaged (1) 	accept interfering / including varies with place/time/random nature repeating test improves reliability	(2) t
(c)(iii)	One relevant idea: (New method) more accurate (1) Hard to measure a small activity (1) Background radiation affects readings (1) Need to find difference of two small quantities (1) Can test smaller samples (1)	ignore better method/results / more reliable difficult to distinguish between the reading and background	(1) grad

Total for question = 10 marks

Q16.

Question number	Answer	Mark
(i)	One mark for each correct label (4)	
		(4)

Question number	Answer	Mark
(ii)	В	(1)

Question number	Answer	Mark
(iii)	zero/0/no charge	

Q17.

Question number	Answer	Additional guidance	Mark
	same number of protons (1)	same atomic number	(2) AO2
	different number of neutrons (1)	different mass number	

Question number	Answer		Additional guidance	Mark
	mass in g 1600	time in days 0	numbers in correct boxes	(2)
	800 (1)	29	bonco	
	400	58 ⁽¹⁾		

Q19.

Question Number		Answer		Additional guidance	Mark
	7	6 6 (1)	one mark for each column must have both numbers in a column correct to get the mark	(2)	

Q20.

Question number	Indicative content	Mark
A CONTRACTOR OF	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. Dangers of exposing people to radioactive sources/radiation.	(6) A01
	 use tongs to carry radioactive sources use lead containers to store sources stay at a distance from radioactive sources use sources for as short a time as possible wear (lead lined) protective clothing (PPE) give treatments from behind a shield /wall wear a radiation badge (dosimeter) 	

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1) Presents a description which is not logically ordered and
		with significant gaps. (AO1)
Level 2	3-4	Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1)
		Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps missing. (AO1)
Level 3	5-6	Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1)
		Presents a description that has a well-developed structure which is clear, coherent and logical. (AO1)

Level	Mark	Additional Guidance	General additional guidance - the decision within levels e.g At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	<u>Additional guidance</u> At least one isolated fact about the dangers of radiation and/or protection from radiation	Possible candidate responses it's ionising causes cancer burns you kills cells mutates DNA wear a radiation badge use tongs work from behind a shield use protective clothing
Level 2	3-4	Additional guidance simple explanation of the dangers of radiation and a fact about protection or reverse OR detailed explanation of the dangers of radiation or protection from radiation	Possible candidate responses radiation is ionising and can kill cells so wear a radiation badge or use tongs and stay at a distance from radiation source as it can cause cancer or use tongs to stay at a distance from radiation sources and wear a radiation badge
Level 3	5-6	Additional guidance	Possible candidate responses

Level 3	5-6	Additional guidance	Possible candidate responses
		detailed explanation of the dangers of radiation and protection from radiation	radiation is ionising and can kill cells and use tongs and stay at a distance from the radiation source

Q21.

Question Number	Answer	Additional guidance	Mark
	processing (1)		(2)
	<u>125 000</u> 1 000 000	accept an appropriate attempt using more than one halving	
OR 1 8			
	OR 3 half-lives or 3 x 5700		
evaluation (1) 17 100	17 000		
		award full marks for the correct answer without working	

Q22.

Answer		Additional guidance	Mark
type of particle proton neutron nucleon	number of particles	guidance 1 mark for each correct line more than one line from a box in the left column ("type of particle") box loses the mark for the box	(3) AO2

Q23.

	Answer	Acceptable answers	Mark
(a)(i)	Gamma/ γ (wave(s)/ ray(s)/radiation)	X-rays/ radiation	(1)
(a)(ii)	Any two from It fluoresces (1) UV (radiation) transfers/gives energy to ink/ink absorbs energy from UV (radiation) (1) (energy from UV is)(re-)radiated/(re)- emitted by ink at lower frequency/as (visible) light (1)	fluorescent Ink/it absorbs UV (light/radiation) Ignore UV is reflected as visible light Ignore luminous emits visible light	(2)
(b)	transposition $\lambda = v/f$ (1) substitution λ	Subst. and transform. either order	
	(1) substitution λ = 3 × 10 ⁸ /7	1 mark only can be scored for correct	(3)

×10 ⁹ (1)	substitution after
evaluation	incorrect
0.043	transposition. 3 ×
(m)	10 ⁸ /7 ×10 ⁹ gains 2
(1) Ignore	marks Accept any
any unit given by	number of sig.figs.
candidate	that rounds to 0.04
	0.04 , 0.0428 (m) (1)
	Give full marks for
	correct answer with
	no working. 0.04 ×
	any other power of
	10 = 2 marks

		Indicative Content	Mark
QWC	*c	A discussion including some of the following points Possible dangerous e-m radiations Microwaves Infrared Ultraviolet (UV) X-rays gamma rays Correctly linked to Internal heating of body cells (microwaves) Skin burns (infrared) Damages skin cells/sunburn (UV) Damages eyes (UV) Can cause skin cancer (UV) Can cause skin cancer (UV) Can cause cataracts (UV) Damage to cells inside the body(X-rays) Mutate/ kill cells in the body (gamma) Damages DNA (X-rays and gamma rays) Link to frequency As the frequency increases/wavelengt h decreases (microwave -> gamma) the waves become more penetrating and	
		do more	(6)

		damage/danger as
		they have
		more energy.
Level	0	No rewardable content
1	1-2	
	1 - 2	 a limited description e.g. gives at least 2 correct radiations and links both to correct damage OR at least 2 correct radiations named with link to correct damage from one and idea that frequency is linked to damage OR just has link between higher frequency and more damage/dangerous e.g. infrared burns your skin and X-rays can damage cells. OR X-rays have a higher frequency than microwaves and can cause cancer OR Higher frequencies cause more damage to cells. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	used with infined accuracy
		 a simple description e.g. gives most of the correct radiations and links to correct damage, at least one with detail of the damage that is caused OR links two to detail of the damage, AND has a link between frequency and energy/danger e.g. Microwaves are absorbed by water in body cells. UV can cause skin cancer and damages your eyes. Xrays and gamma rays can damage cells inside your body OR Gamma and X-rays can penetrate deep into the body. Gamma does most damage as it has the highest frequency. the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed description e.g. gives most of the correct radiations with links to detail of the damage AND explains the link between frequency and energy/danger. e.g Microwaves heat up the water in cells. UV can cause cataracts. Gamma rays are the most penetrating and can mutate cells inside the body because they have the highest frequency. The answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
(a)(i)	X-ray	x	(1)
Question Number	Answer	Acceptable answers	Mark
(a)(ii)	(visible) light	visible (waves)	(1)

Question Number	Answer	Acceptable answers	Mark
(a)(iii)	radio (waves)		(1)
Question	Answer	Acceptable answers	Mark

(1)

Question Number	Answer	Acceptable answers	Mark
(b)	 an explanation linking: travel with same speed (1) 	They travel at the speed of light / same numerical speed for all	
	 in a vacuum / in space (1) 		(2)

Q24.

Question Number		Indicative Content	Mark
QWC	* (c)	 A description including some of the following points Harmful effects include (skin) burns, eye damage, (skin) cancer, cell damage, mutation IR and UV are on either side of visible light (in the em spectrum) UV has shorter wavelength than IR UV has higher frequency than IR higher energy (associated) with UV IR causes (skin) burns UV causes damage to eyes / (skin) cancer / damage to cells (not just damage to skin) / sunburn (potential) danger increases with frequency 	(6)
Level	0	No rewardable content	
1	1 - 2	 a limited description stating one fact about a harmful effect or frequency e.g. skin burns OR UV has high frequency (no comparison) the answer communicates ideas using simple language and us limited scientific terminology spelling, punctuation and grammar are used with limited accuracy 	
2	3 - 4	 a simple description making a correct <u>comparison</u> of harm effects OR a frequency comparison e.g. IR causes skin burns and UV causes (skin) cancer OR higher the frequency the more harm they cause OR UV has higher frequency (than IR) the answer communicates ideas showing some evidence cand organisation and uses scientific terminology appropriate 	the as a of clarity ately
3	5 - 6	 spelling, punctuation and grammar are used with some accurace a detailed description including harmful effects of both UV and I AND relating at least one to frequency e.g. UV causes skin cancer but IR (only) causes skin burns as U has a high(er) frequency the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors 	

Q25.

Question Number	Answer	Acceptable answers	Mark
(a)(i)	C travel with the same speeds in a vacuum, have different frequencies		(1)
Question Number	Answer	Acceptable answers	Mark
(a)(ii)	{damage to/ionise/mutate} {cells / DNA/tissue/ organs/ fetus} / cause {cancer/tumour}	kills cells/bacteria	(1)
Question Number	Answer	Acceptable answers	Mark
(b)(i)	Gamma, y, 8, Y	UV, ultraviolet (rays/waves/radiation) Ignore X-rays	(1)

Answer	Acceptable answers	Mark
one correct use (for UV/X-ray/gamma ray)	for example, (UV) – sunbeds, sterilise, detect banknotes (X-ray) - viewing internal organs / broken bones/airport security (gamma ray) – treat /cure cancer, kill {cells/bacteria} If one incorrect example is given,	(1)
	one correct use (for	one correct use (for UV/X-ray/gamma ray) for example, (UV) – sunbeds, sterilise, detect banknotes (X-ray) – viewing internal organs / broken bones/airport security (gamma ray) – treat /cure

Question Number	Answer	Acceptable answers	Mark
(c)(i)	one from: MP1 heating of (body/human/internal) {cells / organs/tissues} (1)	Accept heating of blood Ignore damages, burns, cancer, mutates, heating (on its own), skin	
	MP2 {heating/boiling/exciting / vibrating} water (in the body) (1)		(1)

Question Number	Answer	Acceptable answers	Mark
(c)(ii)	explanation to include any three of: MP1 (Phones/ they) use lower frequencies / RA (1) MP2 lower frequency: lower energy / RA (1)	wavelength can suitably replace frequency eg use longer wavelength condone use lower MHz (comparison needed not just values quoted)	
	MP3 lower {frequency/energy} less (potential) danger / RA (1)	Accept lower frequency (not energy) does {less /no} {damage/harm} for 2 marks	
	MP4 (phones /they) emit less (intense) radiation RA (1)		
	MP5 phones are less powerful (1)	ignore references to penetration ignore references to energy replacing power here	
		For 2 marks -The resonant frequency of water molecules is the same as the oven frequency	(3)

Q26.

	Answer	Acceptable answers	Mark
(i)	negative (1)		(1)
(ii)	(much) smaller than a neutron (1)		(1)

Q27.

Question Number	Answer				
	 Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO3 Strand 2a and 2b (6 marks) shows some idea that the data can support arguments about alpha, beta and gamma radiation being present argues that there is some evidence that alpha might be emitted (count rate going down with paper interposed) argues that there is a lot of evidence that beta particles are emitted (count rate goes down a lot when the aluminium is inserted) argues that there might be some gamma getting through (lead stopping everything apart from gamma) OR that with the lead present the count rate has gone down to a level consistent with background, so no gamma was present 	(6) AO 1 1			

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 Deconstructs scientific information but understanding and connections are flawed. An unbalanced or incomplete argu- ment that provides limited synthesis of understanding.
Level 2	3-4	 Judgements are supported by limited evidence. (AO3) Deconstructs scientific information and provides some logical connections between scientific concepts. An imbalanced argument that synthesises mostly relevant understanding, but not entirely coherently.
		 Judgements are supported by evidence occasionally. (AO3)
Level 3	5-6	 Deconstructs scientific information and provide logical con- nections between scientific concepts throughout. A bal- anced, well-developed argument that synthesises relevant understanding coherently.
		 Judgements are supported by evidence throughout. (AO3)

Q28.

		Indicative Content	Mark
QWC	*	An explanation including some of the following ideas Need for measurement (N)Background radiation • is always present/all around us • has (natural) source(s) exemplified by space, living things, rocks, food, nuclear/medical sources etc. • would give false reading in experiment How and why to measure(H) Background radiation measurement • is taken at site of experiment because	(6)

2	3 - 4	used with limited accu	on <i>linking</i> aspects of R N + A OR H + A nout source (H) and main readings with several times H)so that the average the main readings
2	3 - 4	 A simple explanation A simple explanation two ideas i.e. N + H OF e.g Take readings with subtract them from the source present. (A) OR It should be taken because it is random (A) 	$\frac{\mathbf{F}_{\mathbf{A}}}{\mathbf{F}_{\mathbf{A}}}$
2	3 - 4	 A simple explanation A simple explanation two ideas i.e. N + H OI e.g Take readings with subtract them from the source present. (A) OR It should be taken 	racy on <i>linking</i> aspects of R N + A OR H + A out source (H) and main readings with a several times
2	3 - 4	 A simple explanation A simple explanation two ideas i.e. N + H O e.g Take readings with subtract them from the 	racy on <i>linking</i> aspects of R N + A OR H + A rout source (H) and
2	3 - 4	 A simple explanation two ideas i.e. N + H O e.g Take readings with 	racy on <i>linking</i> aspects of R N + A OR H + A rout source (H) and
2	3 - 4	 A simple explanation two ideas i.e. N + H O 	racy on <i>linking</i> aspects of R N + A OR H + A
2	3 - 4	 used with limited accurs A simple explanation 	racy on <i>linking</i> aspects of
2	3 - 4		-
			-
		terminology	
		simple language and u	•
		 other readings (A) the answer communication 	inicates ideas using
		OR Background must	
		repeated because they	
		It is there all the time. OR Readings for back	
		rocks.(N)	
		two from N or one from e.g. Background come	
		• A limited explanation	
1	1 - 2		
Level	0	No rewardable content	
		source /main count rate	
		measurements with	
		 must be subtracted from 	
		measurement	
		radiation	
		(A) Background	
		is random Analysis	
		averaged because it	
		several times/	
		simpler It is taken 	
		found so analysis is	
		experiment / rate	
		out for same time as (or longer than)	
		• must be worked	
		average	
		can change with time / they need an	
		and after because it	
		 is taken before 	
		apparatus except source in place	
		• is taken with all	
		different places	
		it is different in	

		appropriately
		 spelling, punctuation and grammar are
		used with some accuracy
3	5 - 6	
		• A detailed explanation <i>linking</i> A with EITHER N + an idea from H OR two or more ideas from H e.g.Background radiation is there all the time. (N) You need to take readings at the place where you will do the experiment and with all the apparatus set up except the source because BR changes from place to place.(H) Then you should subtract background readings from the main experimental readings.(A) OR Take several readings of count rate for averaging since the effect is random (H) and make sure that they are taken in the same place.(H) Then subtract from readings in main experiment.(A)
		• the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately
		 spelling, punctuation and grammar are used with few errors

Q29.

Question number	Answer	Additional guidance	Mark	
	An explanation that combines understanding (1 mark) and reasoning (1 mark) linking: number of neutrons decreases by one (1) number of protons increases by one.(1)	a neutron becomes a proton plus an electron for (2) marks	(2)	

Q30.

Question number	Answer	Additional guidance	Mark	
	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (2 marks): • heat energy gained/absorbed by an electron. • electron changes orbit • electron loses energy	electron excited /unstable (by) emitting radiation	(3)	

Q31.

Question Number	Answer				
	Answers will be credited according to candidate's deployment of	(6)			
	knowledge and understanding of the material in relation to the qualities				
	and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not				
	required to include all the material which is indicated as relevant.				
	Additional content included in the response must be scientific and				
	relevant.				
	AO3 and AO2 (6 marks)				
	AO3				
	most go straight through to P				
	 some are deflected through small angles to Q 				
	 few have deflections greater than 90° to R 				
	 or are even reflected (bounce back off the foil) to R 				
	AO2				
	 alpha positive is repelled by positive nucleus 				
	atom being mostly empty space				
	atoms have a small nucleus				
	 nucleus has a big mass / density 				
	 +ve charge concentrated into a very small space 				

Level	Mark	Descriptor
	0	No awardable content
Level 1	1–2	 Interpretation and evaluation of the information attempted but will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of un- derstanding. (AO3)
		 The explanation attempts to link and apply knowledge and understanding of sci- entific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2)
Level 2	3-4	 Interpretation and evaluation of the information on both variables, synthesising mostly relevant understanding. (AO3)
		 The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the guestion. (AO2)
Level 3	56	 Interpretation and evaluation of the information, demonstrating throughout the skills of synthesising relevant understanding. (AO3)
		 The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made be- tween elements in the context of the question. (AO2)

Level	Mark	Additional Guidance	General additional guidance – the decision within levels
			Eg - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance unlinked statement from the diagram or table or knowledge of the atom	<u>Possible candidate responses</u> most particles go to P <i>(from table)</i> OR particles refract/bend to Q <i>(from diagram)</i>
Level 2	3–4	<u>Additional guidance</u> One link between any TWO of diagram, table, knowledge about atoms.	Possible candidate responses Most particles go straight through (the gold) to P (from table and diagram) OR Most particles go to P which means an atom is mainly space (from table and knowledge) OR particles are reflected because there is a nucleus (diagram and knowledge)
Level 3	5–6	Additional guidance One link between diagram AND table AND knowledge about atoms	Possible candidate responses Most particles go straight through (the gold) to P which means an atom is mainly space OR A few particles reflected back to R which means an atom has a nucleus

Q32.

Answer	Acceptable answers	Mark
atomic /proton number drops by 2 and mass/nucleon number by 4 (1) (which is) alpha decay (1)	2 protons and 2 neutrons are lost $92 \rightarrow 90$ and 238 $\rightarrow 234$ helium nucleus given off (which is) alpha particle	(2)

Answer	Acceptable	Mark
	answers	
same mass/nucleon number but atomic/proton number increases by 1 (1) (negative) beta decay (1)	a neutron changes to a proton ignore GAINS a proton beta particle /electron given off	(2)

Q34.

	Answer	Acceptable answers	Mark
i	1.9-2 (days)		(1)
ii	plotting (0,40), (2,20) and (4,10) OR ANY line which passes through those coordinates (1) smooth curve through those points (1)	Ignore any part of line after 4 days	(2)

Q35.

Question number	Answer	Mark
	one from • same atomic number (1) • same number of protons (1) • same element (1)	(2)
	 and one from different numbers of neutrons (1) different mass numbers (1) 	

Q36.

Answer	Acceptable answers	Mark
А		(1)

Q37.

Answer	Acceptable answers	Mark
D It is the time it takes for half the atoms to decay		(1)

Q38.

Question number	Answer	Mark
(i)	 A 38 B is number of neutrons C is mass number D is an irrelevant addition of two numbers 	(1)

Question number	Answer	Mark
(ii)	☑ B 52 A is number of protons C is mass number D is an irrelevant addition of two numbers	(1)

Q39.

Question number	Answer	Mark
	C a helium nucleus	(1)

Q40.

Question number	Answer	Mark
	B 10 ⁻¹⁰ m	(1)

Question Number	Answer	Mark
	B 10 ⁻¹⁰ m	(1)

Q42.

Answer	Acceptable answers	Mark
An explanation linking: electron(s) (1) is/are lost/gained (1)	do not allow positive electron knocked off / removed/ released	(2)

Q43.

	Answer	Acceptable answers	Mark
(a)(i)	A electron		(1)
(a) (ii)	suggestion to include two of • the ionisation is different (1) • correct difference in ionisation (1) • the <u>masses</u> are different (1) • alpha is bigger than beta (1) • alpha hits more (air) particles (1) • alpha loses its energy in shorter distance (1)	alpha more ionising (than beta) scores 2 marks RA (heavier for bigger) RA RA IGNORE references to penetration	(2)
(b)	A gamma radiation		(1)
(c)(i)	A description linking the following: • neutron decays / changes / becomes (1) • (neutron) into proton (1) • (plus an) electron (1)	quark changes (quark changes) from down to up / d to u e^{-} (do not accept β^{-}) accept n and p for neutron and proton $n > p + e^{-}$ scores 3 marks IGNORE references to atomic and mass numbers; unstable nuclei; too	(3)

(c)(ii)	An explanation linking three of the following: • mass number doesn't change (1) • (because) same number of nucleons / quarks (1) • atomic number goes up by one (1) • (because) there is an extra proton (1)	many neutrons; gamma emitted emitted electron mass is negligible proton and neutron have same mass a neutron has (decayed in)to a proton	(3)
---------	--	--	-----

Q44.

	Answer	Acceptable answers	Mark
(a)(i)	Any two of: Gamma is a wave (1) Alpha is a helium nucleus (1) Alpha is charged (1) Alpha has a mass (1) Gamma penetrates further/ highly (1) Gamma weakly ionising (1) Gamma travels faster (1)	Reverse arguments em radiation Gamma has no charge Gamma has no mass examples of penetrating power alpha highly ionising ignore vague comments eg stronger Ignore uses and dangers	(2)
(b)(i)	D		(1)
(b)(ii)	В		(1)
(c)	An explanation linking: electron(s) (1) is/are lost/gained (1)	do not allow positive electron knocked off / removed/ released	(2)

		Indicative Content	Mark
QWC	*(d)	An explanation including some of the following points: <u>Radiation from the</u> front of the lens Alpha particles absorbed by glass Beta particles do not penetrate glass Gamma rays pass through glass Background radiation varies There is a large	(6)

		difference in size
		between front and
		back counts
		Radiation detected
		is gamma rays only
		Radiation from side
		of the lens
		Alpha particles
		cannot penetrate
		aluminium
		Beta particles are
		absorbed by
		aluminium
		Gamma rays pass
		through aluminium
		There is a small/no
		difference in size
		between front and
		side counts
		Perhaps a few
		gamma rays
		absorbed by
		aluminium
		Background
		radiation varies
		Likely to contain
		gamma rays only
		May be different
		from front count due
		to random nature of
		emissions Radiation
		from the back of the
		lens
		Alpha particles
		absorbed by coating
		and/or glass
		Beta particles are
		emitted the from rear
		surface
		Gamma rays
		emitted from
		radioactive glass
		There is a large
		difference in size
		between front and
		back counts
		Background
		radiation varies
		Radiation is both
		beta particles and
		gamma rays
		Difference between
		front and back
		counts due to beta
		particles
Level	0	No rewardable content
1	1 - 2	
		- Barden de combra - Companya Combra de Com
		• a limited explanation mentioning two
		 a limited explanation mentioning two unrelated points, but without linking them

	 properly, e.g. beta particles are stopped by thick aluminium, there is most radiation behind the lens the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
3 - 4	
5-4	 a simple explanation mentioning some points with an appropriate linkage to one of the readings e.g. no beta particles escape forwards because the glass absorbs them OR only gamma rays escape to the side because the aluminium stops alpha and beta particles the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
5 - 6	 a detailed explanation mentioning some of the points with appropriate linkage to a comparison of at least two of the readings e.g. no beta particles escape forwards because the glass absorbs them, but beta particles can escape backwards so that count is higher OR only gamma rays can get through the glass and the thick aluminium, so the front and side counts are about the same the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors
	3 - 4 5 - 6

Total for question = 12 marks

Q45.

Question Number	Answer	Acceptable answers	Mark
	gamma (1) beta (1)		(2)
	The second second at the second s		

Question Number	Answer	Acceptable answers	Mark
	A gamma		(1)

Q47.

Question Number	Answer		Acceptable answers	Mark
	An explanation linking the following:-			(2)
	(it is) ionising (can cause)	(1)	has high frequency/energy	
	damage to tissue/ mutation/cancer/tumours	(1)	kill cells / (causes) burns	

Q48.

Question Number	Answer	Acceptable answers	Mark
	 Any three from: keep distant from sources / (stand) in a separate room (behind leaded window etc.) limit time exposed to the radioactivity 	(distance also involved if you) use computer controlled equipment the time aspect must be clear here.	(3)
	 use lead shielding for the sources / handle sources with tongs etc. / dispose radioactive material(s) safely wear lead aprons / used lead-lined clothing / lead-lined gloves 	ignore goggles / (special) gloves without detail. Similarly ignore `radiation resistant' (clothes)	
	 monitor exposure with some detector / badge / use of (radiation) meters 		

Q49.

Answer	Acceptable answers	Mark
P and M	one mark for a pair	
OR M and P		
OR N and Q		
OR Q and N		(1)

Q50.

Question Number	Answer	Additional guidance	Mark
	a description to include:		(4)
	 put rock(s) in front of/near tube (1) 	not 'in' tube	AO 2 2
	 measure (count rate) separately for the two different rocks (1) 	keep rocks apart	
	 measure each count for the same time period (1) 		
	 keep source-detector distance the same for both rocks (1) 		
	 take (into account)/measure background count (1) 		
	 repeat readings and take average(s) (1) 		

Q51.

Question Number	Answer	Additional guidance	Mark
(i)	Geiger (Müller counter) (1)	GM {tube/meter} or other appropriate detector e.g. dosimeter, film badge, scintillation counter accept incorrect spellings such as "giga"	(1)
		ignore radioactive counter	

Question Number	Answer	Additional guidance	Mark
(ii)	any two acceptable sources from :		(2)
	cosmic (rays) (1)	cosmic microwave background radiation (CMBR)	
	Sun (1)		
	rocks / ground (1)		
	{nuclear / atomic} tests / nuclear waste (1)	accept nuclear accidents (Chernobyl, Fukushima etc)	
	(nuclear) power stations (1)		
	plant (sources) (1)		
	buildings (1)		
	food (1)	accept named foods	
	water (1)		
	medical (1)	accept X-rays, radiotherapy	
	radon (1)		
		ignore alpha, beta, gamma	

Q52.

	Answer	Acceptable answers	Mark
--	--------	-----------------------	------

(i)	alpha	Alpha ray, alpha particle, α Ignore capital letters	(1)
(ii)	A description including two of one increases as other increases (1) rate of increase is in the range from 1.17 to 1.33 (cm/MeV) (1) range gradually increases more with energy (1)	the particles with higher energy travel further accept values quoted from graph not (quite) linear/not proportional /curves upwards accept values quoted from graph	(2)

Q53.

Answer	Acceptable answers	Mark
☑ A gamma radiation		(1)

Q54.

Indicative Co	ntent Mark
An explanation including some the following p <u>Radiation from</u> <u>front of the len</u> Alpha particles absorbed by g Beta particles not penetrate Gamma rays through glass Background radiation varie There is a lar difference in s between front back counts Radiation def is gamma rays <u>Radiation from</u> <u>of the lens</u> Alpha particles cannot penetria aluminium Beta particles absorbed by aluminium	e of points: <u>n the</u> <u>hs</u> es glass pass pass (6) ize and tected s only <u>n side</u> es ate s are

		points with an appropri the readings e.g. no be forwards because the	ate linkage to one of eta particles escape
2	3 - 4	a simple explanat	ion mentioning some
		used with limited accur	
		terminologyspelling, punctuation	on and grammar are
		simple language and u	•
			unicates ideas using
		thick aluminium, there behind the lens	is most radiation
		properly, e.g. beta part	icles are stopped by
		unrelated points, but w	
1	1 - 2	a limited explanat	ion mentioning two
	0	No rewardable content	
Level 1	<u>0</u> 1 - 2	absorbed by coating and/or glass Beta particles are emitted the from rear surface Gamma rays emitted from radioactive glass There is a large difference in size between front and back counts Background radiation varies Radiation is both beta particles and gamma rays Difference between front and back counts due to beta particles No rewardable content	
		to random nature of emissions <u>Radiation</u> from the back of the lens Alpha particles	
		from front count due to random nature of	
		May be different	
		Likely to contain gamma rays only	
		radiation varies	
		Background	
		absorbed by aluminium	
		gamma rays	
		Perhaps a few	
		between front and side counts	
		difference in size	
		There is a small/no	
		through aluminium	

		 OR only gamma rays escape to the side because the aluminium stops alpha and beta particles the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed explanation mentioning some of the points with appropriate linkage to a comparison of at least two of the readings e.g. no beta particles escape forwards because the glass absorbs them, but beta particles can escape backwards so that count is higher OR only gamma rays can get through the glass and the thick aluminium, so the front and side counts are about the same the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Q55.

Question Number	Answer	Acceptable answers	Mark
(i)	C		(1)

Question Number	Answer	Acceptable answers	Mark
(ii)	An explanation linking any three of the following:-		(3)
	positron has a positive (charge) (1)	positron has +1 / +e (charge) positron charge is +	
	electron has a {negative (charge) / opposite charge(s) } (1)	electron has -1 / -e (charge) electron charge is –	
	these charges cancel out (1)	neutralise / overall charge is zero	
	gamma rays /waves have no charge (1)	Accept for three marks: electron and positron have equal and opposite charges which cancel out.	

Question Number	Answer	Acceptable answers	Mark
(iii)	An explanation linking : positron and electron have mass(before the annihilation) (1) gamma (rays produced by annihilation) have energy (1) (the equation shows)	mass (of particles) becomes energy of gamma (rays) (2) all the mass before the collision becomes the energy of the gamma (rays) after the particles have been annihilated (2) E=mc ² reference (1) explained will get the other (1)	(2)

Question Number	Answer	Acceptable answers	Mark
(a)(i)	proton(s) (1)	NOT photon	(1)

Question Number	Answer	Acceptable answers	Mark
(a)(ii)	electron(s) (1)		(1)

Question Number	Answer	Acceptable answers	Mark
(b)(i)	evidence of halving activity eg line on graph at 80 (Bq) or two lines at, say, 100 and 50. (1)	accept halving in answer space e.g. $160 \rightarrow 80$ or $80 \rightarrow 40$ or $160 \div 2 = 80$	
	8 (days) gains both marks	NOT 160 ÷ 40 or 131 ÷ {2 or 4} or 40 ÷ 2 (unless clearly an activity)	(2)

Question Number	Answer	Acceptable answers	Mark
(b)(ii)	idea of two half-lives (1)	halving of 800 twice, e.g. 400 AND 200 seen	
	but, 16 (days) gains both marks (2)	Allow ECF from graph eg allow half-life from graph x 2 for both marks	(2)

Questi Numb		Indicative Content	Mark
QWC	* (c)	 A discussion including some of the following points Advantages (currently) large resources of fuel/ fuel (reserves) will last a long time (Produces) large amount of (electrical) energy/electricity Does not produce (much/any) carbon dioxide Does not produce (much/any) sulphur dioxide Does not add to global warming/climate change Good safety record (under normal operating conditions) Only small amount of fuel needed to produce large amount of energy/electricity Reliable supply/provides continuous supply of electricity (for a long time) Reduces dependence on foreign supplies of energy Conserves fossil fuel supplies (Spent) fuel can be processed (to produce fuel for other reactors) Provides employment/jobs Disadvantages Produces nuclear/radioactive {waste/materials}	
		 Accept named example of accidents eg Fukishima, Chernobyl, 3-mile island Mining and processing fuel both produce large amounts of carbon dioxide Expensive to build and/or decommission (nuclear power stations) Reference to target for terrorist attacks Produces material which can be used to develop nuclear weapons/by terrorists Negative public perception OWTTE	(6)

Level	0	No rewardable content
1	1 - 2	 A limited discussion giving one fact e.g. they give people jobs (in that area) OR they can have accidents like in Japan (after the tsunami). the answer communicates ideas using simple language and uses limited scientific terminology. spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	 A simple discussion that states one advantage and one disadvantage OR states more than one advantage OR states more than one disadvantage. e.g. they are a reliable energy source and do not produce any carbon dioxide. OR they do not cause any global warming as they do not produce sulphur dioxide. OR they produce radioactive waste and many people don't want them built. the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately
3	5 - 6	 spelling, punctuation and grammar are used with some accuracy A detailed discussion of either advantages or disadvantages AND at least a mention of the other one. e.g. They produce large amounts of electricity and don't produce carbon dioxide but they produce radioactive materials (in the fuel rods). OR They are a reliable source of energy but they can damage large areas if there is an accident and the fuel is non-renewable. the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

(Total for Question =12 marks)

Q57.

Answer	Acceptable answers	Mark
A description including any two from: • secure storage (1): • avoid direct contact (1) • wear protective clothing (1) • minimise exposure (1) • shielding (1) • minimise dose (1) • monitor exposure (1)	either the purpose, such as to prevent radiation getting out or a description such as lead-lined box/locked away when not in use. do not touch / use tongs /wash after handling lead lined suits/aprons/masks/g loves ignore goggles long distance away / not pointing towards body/ keep	(2)

• protect other people (1)	sources shielded /stand behind shields short time wear film badge/use Geiger counter (to monitor radiation levels) warning signs / barriers / restricted areas	
	/controlled areas	

Q58.

	Answer	Acceptable answers	Mark
(i)	222	4 less/4fewer	(1)
(ii)	86	2 less/2fewer	(1)

Q59.

Question Number	Answer	Additional guidance	Mark
	 point after first half-life - 6, 40 (1) point after second half-life - 12, 20 (1) 	within 1 small square by eye	(3) AO 3 1a
	 point after third half-life - 18, 10 (1) 	smooth curve starting at 80, with a decreasing gradient passing through one correct half-life point scores 2 marks smooth curve starting at 80, with a decreasing gradient passing through two correct half-life points scores 3 marks if no other mark scored smooth curve showing decreasing gradient but not going through any correct points scores 1 mark	

Q60.

	Answer	Additional guidance	Mark
(i)	One from: cell damage (1) cancer (1) radiation sickness / poisoning (1) mutation (1) chromosomal damage (1) dna damage (1) skin damage (1) (named) organ damage (1) burns (1) releases ionising radiation (1)	allow ionises / kills cells	(1) AO1

	Answer	Additional guidance	Mark
(ii)	any one from: Geiger (Muller) (tube/counter)	accept recognisable spellings	(1) A01
	photographic film	GM film badge	
	dosimeter	-	

	Answer	Additional guidance	Mark
(iii)	any two from: beta(minus)/β(-) (1) beta + (1) x-rays (1) gamma/γ (1)	accept positron in place of beta +	(2) AO1
		accept proton beam accept electron beam	
		maximum of 1 mark if one incorrect radiation given zero marks if two incorrect radiations given	

Q61.

	Answer	Acceptable answers	Mark
(i)	C the same as the charge on the proton		(1)
(ii)	A electrons		(1)

Q62.

	Answer	Acceptable answers	Mark
(i)	suitable lines on graph to show halving after about 200 000 years (2) • horizontal line at 750 +or -50 Bq on y-axis to curve (1) • meeting (by eye) vertical line from x-axis between 190,000 years and 230,000 years (1)	use of data from graph to show halving after about 200 000 years 1500/2 =750(Bq) or 1600/2=800(Bq) gives a half-life of 210,000 +or- 20 000 (years)	(2)
(ii)	any one of ●		(1)
	penetrates/passes through the skin (1)		

 ionises (1) damages tissue/ cells/DNA (1) mutates cells/DNA(1) causes 	
cancer(1)	

Q63.

	Answer	Acceptable answers	Mark
(i)	Gamma/ γ (wave(s)/ ray(s)/radiation)	X-rays/ radiation	(1)
(ii)	Any two from It fluoresces (1) UV (radiation) transfers/gives energy to ink/ink absorbs energy from UV (radiation) (1) (energy from UV is)(re-)radiated/(re)- emitted by ink at lower frequency/as (visible) light (1)	fluorescent Ink/it absorbs UV (light/radiation) Ignore UV is reflected as visible light Ignore luminous emits visible light	(2)

Q64.

Question Number	Answer	Acceptable answers	Mark
(i)	An explanation to include two from: Radiation is ionising (1) Radiation can cause specified damage e.g. cancer or damage/mutate DNA (1) if dose/exposure is too high (1)	(causes) ionisation/ (can) ionise/ mutate cells/tissue ignore radiation poisoning/death/make you ill ignore {damage/kill} cells/tissue if absorb(ing) too much (radiation) or so you don't absorb too much (radiation) Accept for both marks: Too much radiation can cause cancer (after a while)	(2)

Question Number	Answer	Acceptable answers	Mark
(ii)	C we have a better understanding of the risks from radiation (1)		(1)

Question Number		Indicative Content	Mark
δ Μ C	*(iii)	 An explanation including some of the following points identification of alpha, beta, gamma as possible types of radiation identification of X-rays as possible type of radiation film is dark(er)/changes colour where radiation is absorbed different areas of the film are exposed to different types of radiation gamma (or X-rays) affect all areas of film beta absorbed/stopped by aluminium/passes through paper beta only reaches (top) part of film alpha unlikely to be detected at all the lead will stop (some of) gamma or (some) gamma will pass through lead/aluminium/paper the paper will stop/absorb alpha throughout the question accept symbols for types of radiation 	(6)

Level	0	No rewardable content
1	1-2	 a limited explanation which gives one relevant fact about types of radiation or the film badge e.g. types of radiation are alpha, beta and gamma OR beta absorbed by aluminium OR the radiation affects the film OR gamma can pass through lead the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	 A simple explanation, giving more than one relevant fact about types of radiation OR the film badge OR at least one fact about both. e.g. The 3 types of radiation are alpha, beta and gamma. Gamma can pass through lead. OR The 3 types of radiation are alpha, beta and gamma. Radiation makes the film change colour. OR beta will get through the paper but alpha will be stopped (by paper). OR Radiation makes the film change colour. The lab. will compare how much got through the paper, aluminium and lead the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed explanation giving more than two relevant points about the film badge OR at least one fact about the types of radiation AND more than one about the film badge e.g. Beta will get through the paper but alpha will be stopped (by paper).Gamma can penetrate the aluminium. OR The film detects radiation. The aluminium will stop beta but, not gamma. OR The 3 types of radiation are alpha, beta and gamma. Beta will get through the paper but alpha will be stopped (by paper). the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Q65.

Answer	Acceptable answers	Mark
alpha particles (In the left section) gamma rays (centre section) infrared radiation (right section)	Any one in correct position for one mark, all three in correct position for two marks	(2)

(2)	
-----	--

Q66.

Question Number	Answer	Additional guidance	Mark
(i)	one from: (radiation from them) (can cause) cancer / tumours (1) radiation sickness / radiation poisoning (1) (radiation from them can) mutate / alter/ deform / damage / ionise / kill {cells OR DNA OR genes} (1) burns skin (1)	accept any named type of cancer accept birth defects OR sterilisation	(1)
		Ignore unqualified poisoning kills you skin damage	

Question Number	Answer	Additional guidance	Mark
(ii)	neutron (in the nucleus) (1)	down quark / d (in the neutron)	(2)
		OR mass/nucleon number stays same	
		becomes an up quark / u	
	becomes a proton (and an electron) (1)	OR atomic/proton number increases by 1	
		n > p + e(⁻) scores 2 marks	
		if no other mark scored allow for 1 mark (it) emits an electron OR	
		beta (minus) is an electron OR	
		energy is released OR	
		loses a proton and gains a neutron	
		IGNORE gaining/losing/becoming electron(s)	

Q67.

Question Number	Answer	Additional guidance	Mark
(i)	Atoms may form positive ions by losing electrons. (1)	accept any clear indication that correct word is in gap	(2)
	The electrons involved in forming positive ions are the outer electrons (1)		

Question Number	Answer	Mark
(ii)	The only correct answer is C gamma	(1)
	A is not correct because alpha radiation is not electromagnetic	
	B is not correct because beta minus radiation is not electromagnetic D is not correct because neutron radiation is not electromagnetic	

Question Number	Answer	Mark
(iii)	The only correct answer is A alpha	(1)
	B is not correct because beta minus travels further in air than alpha	
	C is not correct because beta plus travels further in air than alpha	
	D is not correct because gamma travels further in air than alpha and beta	

Q68.

Answer	Acceptable answers	Mark
B becquerel		(1)

Q69.

	Answer	Acceptable answers	Mark
(i)	A description linking the following: • neutron decays / changes / becomes (1) • (neutron) into proton (1) • (plus an) electron (1)	quark changes (quark changes) from down to up / d to u e^{-} (do not accept β^{-}) accept n and p for neutron and proton $n > p + e^{-}$ scores 3 marks IGNORE references to atomic and mass numbers; unstable nuclei; too many neutrons; gamma emitted	(3)

 (ii) An explanation linking three of the following: mass number doesn't change (1) (because) same number of nucleons / quarks (1) atomic number goes up by one (1) (because) there is an extra proton (1) 	emitted electron mass is negligible proton and neutron have same mass a neutron has (decayed in)to a proton	(3)
---	---	-----

Q70.

	Answer	Acceptable answers	Mark
(i)	A 92		(1)
(ii)	neutron(s) (1)	allow phonetic spelling nutron, newtron, nuetron	(1)

Q71.

Question number	Answer	Mark
	 B ionising and emitted by unstable nuclei A is incorrect stable nuclei do not give radioactive emissions C is incorrect not all radioactive emissions are neutral D is incorrect not all radioactive emissions are neutral 	(1) AO1

Q72.

Question number	Answer	Additional guidance	Mark
(i)	An explanation to include;		(2) AO2
	there is no aluminium to absorb β particles (1)	aluminium absorbs/stops/blocks beta particles	
	(therefore) more β particles reach the G-M tube (1)		
		accept reverse arguments	
		accept radiation for beta particles	

Question number	Answer	Additional guidance	Mark
(ii)	(idea of) background radiation	a named source of background radiation	(1) AO3

Question number	Answer	Additional guidance	Mark
(iii)	becquerel	accept Bq accept close spelling	(1) A01

Q73.

	Answer	Acceptable answers	Mark
(i)	Idea of 2 half-lives (1) 11 400 = 2×5700 Idea of halving activity twice (1) $0.55 \times 2 \times 2$ Calculation (1) 2.2 (Bq)	11 400 / 5700 = 2 2.2 (Bq) for three marks	(3)
(ii)	 Explanation linking two of: Background radiation affects the measurement (1) Needs to be subtracted from 	accept interfering / including varies with place/time/random nature repeating test improves reliability	(2) t

	 readings (1) Background radiation is variable (1) Background radiation needs to be averaged (1) 		
(iii)	One relevant idea: (New method) more accurate (1) Hard to measure a small activity (1) Background radiation affects readings (1) Need to find difference of two small quantities (1) Can test smaller samples (1)	ignore better method/results / more reliable difficult to distinguish between the reading and background	(1) grad