CP1 Revision Mat – Grade 4 - Grade 5

physical quantity	unit na	ame	unit symbol							
length				9.	An estimate for the thickness of a layer	of graphene is 0.	335 nanomet	res.		
mass					40-9					
time					1 nanometre is the same as 10^{-9} met What is the thickness of a sheet made f		of granhene	2		
electric current					Give your answer in metres, to 3 signifi					
temperature					,			(-)		
amount of substance										
frequency										
force										
energy										••••••
power										
pressure										
Electric charge										
Electric potential difference	e									
Electric resistance										
Magnetic flux density										
	-									
Describe what a physical quantity is. (2)			5. Write the following in the shor	test form u	sing multiples and submultiples e.g. 45 000W = 45kW (5)	8. The masses of the four	"gas giants" are give	n in the table. (4)		
			a. 0.000 05 V			Dispet	laikaa	Catura	Heart	Nestron
			a. 0.000 03 V			Planet Mass (kg)	Jupiter 1.90×10^{27}	Saturn 5.96×10^{26}	Uranus 8.68×10^{25}	Neptune 1.02×10^{26}
			b. 12000 g			a. Arrange the four				1102 // 10
			0.00003F m							
2. Describe what SI base and derived units are. (2)		c. 0.000025 m							
			d. 11 000 000 V							
			e. 0.000 0079 A			b. The mass of the E	arth is 5.98×10^{24}	kg. (2)		
								er is Saturn's mass th	nan that of the Earth	?
3. Recall the SI base units (6) and derived units (9	9) for physical quantities including t	he unit symbols.	6. Write the following values with	nout using I	multiples or submultiples e.g. 5.2 kW = 5200 W (5)		, -			
	SI base units		a. 6.8 kV							
physical quantity	unit name unit syn	nbol	b. 15 mA							
			20.00							
			c. 30 μ Ω							
			d. 20 kHz			c. i. The radius of Nep	tune is 2.43×10^7 r	n.		
			e. 17.5 nA			Use the equation	voli	ume of a sphere = $\frac{4}{3}$, mr3	
physical quanti	Derived units ty derived unit abbrev	iation	7. Convert the following. (5)					anne of a sphere $-\frac{1}{3}$	\ III	
physical quality	ty derived drift abbrev	lacion	a. 7.5 minutes into seconds	i		to find the volum Use 3.14 as the v	e of Neptune in m^3 . alue for π . (2)			
			b. 3.5 hours into seconds							
			c. 12 minutes into seconds							
			d. 4.25 hours into seconds			ii. Calculate the de	ensity of Neptune			
<u> </u>			e. 0.45 hours into seconds			Give your answ				
4. Put the following prefixes for multiples and su	hmultiples in the correct order of s	ize with the largest first	(3)							
		with the largest liist.	\~/							
micro, nano	, kilo, giga, mega, milli, centi									

1 $d = s \times t$ $\frac{d}{s}$ $\frac{d}{t}$ $\frac{d}{s}$ $\frac{d}{t}$ $\frac{d}{s}$ $\frac{d}{t}$ $\frac{d}{s}$				
$2 \qquad a = \frac{\Delta v}{t} \qquad \frac{a}{a}$ $3 \qquad F = m \times a \qquad \frac{a}{F}$ $M \qquad W = m \times g \qquad \frac{g}{m}$ $5 \qquad p = m \times v \qquad \frac{g}{v}$ $6 \qquad E_P = m \times g \times \Delta h \qquad \frac{g}{E_P}$ $m \qquad v \qquad b \qquad g$ $E_R = \frac{1}{2} \times m \times v^2 \qquad \frac{E_R}{m}$ $7 \qquad E_K = \frac{1}{2} \times m \times v^2 \qquad \frac{E_R}{m}$ $v \qquad v \qquad$			d	
$2 \qquad a = \frac{\Delta v}{t} \qquad \frac{a}{\Delta v}$ $1 \qquad 3 \qquad F = m \times a \qquad \frac{a}{F}$ $m \qquad 4 \qquad W = m \times g \qquad \frac{g}{m}$ $W \qquad b \qquad m \qquad m$	1	$d = s \times t$	S	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			t	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Λ12	а	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$a = \frac{\Delta v}{}$	Δv	
3 $F = m \times a$ F m 4 $W = m \times g$ m W 5 $p = m \times v$ p v 6 $E_P = m \times g \times \Delta h$ g E_P m 7 $E_K = \frac{1}{2} \times m \times v^2$ m v 8 $efficiency = \frac{useful\ energy\ out}{total\ energy\ in}$ 9 $v = f \times \lambda$ f λ v 10 $v = \frac{d}{t}$ t v 11 $W = F \times d$ F		t	t	
4 $W = m \times g$ m W m W m p v h g $E_{P} = m \times g \times \Delta h$ g E_{P} m T $E_{K} = \frac{1}{2} \times m \times v^{2}$ m v g E_{K} g E_{R} m v d d $10 v = \frac{d}{t} v d W = F \times d$			а	
4 $W = m \times g$ m W m W m p v h g $E_{P} = m \times g \times \Delta h$ g E_{P} m T $E_{K} = \frac{1}{2} \times m \times v^{2}$ m v g E_{K} g E_{R} m v d	3	$F = m \times a$	F	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			m	
5 $p = m \times v$ p			g	
5 $p = m \times v$ p	4	$W = m \times g$	m	
5 $p = m \times v$ $\frac{p}{v}$ 6 $E_P = m \times g \times \Delta h$ $\frac{g}{E_P}$ 7 $E_K = \frac{1}{2} \times m \times v^2$ $\frac{E_K}{m}$ 8 $efficiency = \frac{useful\ energy\ out}{total\ energy\ in}$ 9 $v = f \times \lambda$ $\frac{f}{v}$ 10 $v = \frac{d}{t}$ $\frac{d}{t}$ 11 $W = F \times d$ F		9	W	
$E_{P} = m \times g \times \Delta h$ $E_{P} = m \times g \times \Delta h$ $E_{E} = \frac{1}{2} \times m \times v^{2}$ $E_{K} = \frac{1}{2} \times m \times v^{2}$ $V = \frac{1}{2$			m	
$E_{P} = m \times g \times \Delta h$ $E_{P} = m \times g \times \Delta h$ $E_{E} = \frac{1}{2} \times m \times v^{2}$ $E_{K} = \frac{1}{2} \times m \times v^{2}$ $V = \frac{1}{2$	5	$p = m \times v$	р	
6 $E_P = m \times g \times \Delta h$ $E_$	-	1	ν	
$E_{P} = m \times g \times \Delta n$ $E_{E} = \frac{1}{2} \times m \times v^{2}$ $E_{K} = \frac{1}{2} \times m \times v^{2}$ $V = \frac{1}{2} \times m \times $			h	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G	E v a v A h	g	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O	$E_P = m \times g \times \Delta n$	E_P	
$F_{K} = \frac{1}{2} \times m \times v^{2}$ $V = \frac{useful \ energy \ out}{total \ energy \ in}$ $V = f \times \lambda$ $V = \frac{d}{t}$ $V = f \times d$ $V = \frac{d}{t}$ $V = f \times d$			m	
8 efficiency = $\frac{useful\ energy\ out}{total\ energy\ in}$ 9 $v = f \times \lambda$ v 10 $v = \frac{d}{t}$ v 11 $W = F \times d$ v		1	Ек	
8 efficiency = $\frac{useful\ energy\ out}{total\ energy\ in}$ 9 $v = f \times \lambda$ v 10 $v = \frac{d}{t}$ v 11 $W = F \times d$ v	7	$E_K = \frac{1}{2} \times m \times v^2$	m	
9 $v = f \times \lambda$ $x = \frac{f}{\lambda}$ $y = \frac{d}{t}$		¹⁴ 2	v	
9 $v = f \times \lambda$ $x = \frac{f}{\lambda}$ $y = \frac{d}{t}$	_	useful energy	out	
9 $v = f \times \lambda$ $x = \frac{f}{\lambda}$ $y = \frac{d}{t}$	8	$efficiency = {total\ energy}$	in	
9 $v = f \times \lambda$ λ v 10 $v = \frac{d}{t}$ v d t v 11 $W = F \times d$ F			1	
$v = \frac{d}{t}$ $v = \frac{d}{t}$ $w = F \times d$ $v = \frac{d}{t}$ $v = \frac{d}{t}$	۵	$y_1 - f \vee y_2$	_	
10 $v = \frac{d}{t}$ $v = \frac{d}{t}$ $W = F \times d$ F	9	$\nu = J \times \lambda$		
10 $v = \frac{d}{t}$ $\frac{t}{v}$ 11 $W = F \times d$ F		,		
$W = F \times d$	10	d	_	
$W = F \times d$	IU	$v = \frac{1}{t}$		
$11 \qquad W = F \times d \qquad F$		L		
	11	$M - E \vee A$	_	
\(\text{VV} \)	11	$vv = r \times a$		
			VV	

	F	E	
12	$P = \frac{E}{t}$	P	
	\bar{t}	t	
		d	
13	$M = F \times d$	F	
		M	
		Q	
14	$E = V \times Q$	E	
		V	
		Q	
15	$Q = I \times t$	I	
		t	
		I	
16	$V = I \times R$	V	
		R	
		I	
17	$P = I \times V$	P	
		V	
	2	I	
18	$P = I^2 \times R$	P	
		R	
4.0	m	ρ	
19	$ ho = {V}$	m	
	<u> </u>	V	
20		e	
	$F = k \times e$	F	
		k	
0.4	F	A	
21	$P = \frac{1}{A}$	F	
	A	P	

٠,٠,	$11^{2} - 11^{2} - 7 \times 9 \times 9$	-	
22	$v^2 - u^2 = 2 \times a \times d$	v	
		F	
23	$F = \frac{(mv - mu)}{t}$	mv	
ZJ	$r = {t}$	mu	
	C	t	
		I	
24	$E = U \times I \times t$	Ε	
24	$E = V \times I \times t$	V	
		t	
		Ι	
25	П D., I., I	F	
25	$F = B \times I \times l$	1	
		В	
		N _P	
00	$V_{\rm p}$ $N_{\rm p}$	N _S	
26	$\frac{V_{\rm p}}{V_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$	V_P	
	$V_{\rm S}$ $IV_{\rm S}$	V_S	
		IP	
		Is	
27	$V_{\rm p} \times I_{\rm p} = V_{\rm s} \times I_{\rm s}$	V_P	
		V_S	
		θ	
		E	
28	$E = m \times c \times \theta$		
		m	
		С	
20	$E = acc \times I$	Е	
29	$E = m \times L$	m	
		L	
		<i>P</i> ₁	
30	$P_1 \times V_1 = P_2 \times V_2$	<i>P</i> ₂	
	= 1 · · · 1	V_1	
		V_2	
0.4	п 1	Е	
31	$E = \frac{1}{2} \times k \times e^2$	e	
		k	
		ρ	
$ p = h \times \rho$	$p = h \times \rho \times g$	g	
JZ	$p - n \wedge p \wedge g$	h	
		p	

- 1. If a force of 13N is applied over a distance of 71m, how much work is done?
- 2. A frog covers 17metres in 34 seconds, what is its speed?
- 3. If a circuit has a potential difference of 6V and a current of 4A what is the circuit's resistance?
- 4. If the force applied to a spring is 300N and the spring extends by 2metres, what is the spring constant?
- 5. A 200W toaster takes 2 minutes to toast some bread. How much energy was used?
- 6. A 2kg box was lifted onto a 3metre shelf (g =10N/kg) how much Gravitational potential energy has it gained?
- 7. A 110kg rugby player runs at a velocity of 6 metres per second, what is his momentum?
- 8. A 12kg dog has an acceleration of 2m/s², how much force was needed for this acceleration?
- 9. Usain Bolt has a mass of 90kg and runs at a velocity of 11m/s, what is his kinetic energy?
- 10. A washing machine uses a 3A current and runs on a potential difference of 230V, what is the power rating of the machine?
- 11. A lorry of mass 20 000kg produces a force of 30kN, calculate the acceleration.
- 12. A Bugatti covers 32km in 20minutes, what is its speed in a) m/s b) km/h?
- 13. How much does a 71kg girl weigh on the moon? (g=1.kN/kg)
- 14. A cricket ball of mass 200g travels at 20m/s, what is it's a) momentum b) kinetic energy?
- 15. How much work must be done to push a 1750kg car back home, a distance of 3.4km?
- 1. If a force of 71 N is applied over a distance of 110m, how much work is done?
- 2. A frog covers 0.5 km in 25 seconds, what is its speed?
- 3. If a circuit has a potential difference of 6kV and a current of 400mA what is the circuit's resistance?
- 4. If the force applied to a spring is 316MN and the spring extends by 0.2metres, what is the spring constant?

22 $|y^2 - y^2 - 2 \times a \times d$

- 5. A 0.34kW toaster takes 21 seconds to toast some bread. How much energy was used?
- 6. A 2g box was lifted onto a 300mm shelf (g =10N/kg) how much Gravitational potential energy has it gained?
- 7. A 150 000g rugby player runs at a velocity of 10km/h, what is his momentum?
- 8. A 15 000 000 mg dog has an acceleration of 4.5 m/s², how much force was needed for this acceleration?
- 9. Usain Bolt has a mass of 90kg and runs at a velocity of 30km/h, what is his kinetic energy?
- 10. A washing machine uses a 6000 mA current and runs on a potential difference of 0.4kV, what is the power rating of the machine?

CP2 Revision Mat – Grade 4 - Grade 5

Explain the difference between vector and scalar quantities and provide specific examples.

Define velocity

Calculate the speed travelled between a) 0s-6s b) 6s-15s c) 15s-20s in Figure 1.

Analyse Figure 2 to:

- a. Calculate the acceleration between a) 0s-6s b) 6s-15s c) 15s-20s
- b. Calculate the distance travelled between a) 0s-6s b) 6s-15s c) 15s-20s

Describe three methods for measuring the speed of an object.

State the acceleration due to gravity .

State Newton's First Law

Calculate the resultant force on these objects and describe the motion of the object.

Describe how weight is measured

Describe how the weight of an astronaut changes during a trip to the surface of the moon and back.

Everyday Experience	Speed (m.s ⁻¹)
Walking	
Running	
Cycling	
Driving	
Sound	
Wind	
Light	

Factor effecting Stopping Distance Effect on Stopping Distance & Explanation

Mass of the vehicle

Speed of the vehicle

Drivers reaction time

Quality of brakes

State of the road

Amount of friction between tyres and road

Describe a method to investigate the relationship between force, mass and acceleration by varying the masses added to trolleys.

Explain why we say this object is accelerating.

Explain methods of measuring human reaction times and recall typical results

efine the term	stopping distance.	_

Describe how stimulants, depressants and distractions effect reaction time.

Explain the dangers caused by large decelerations and estimate the forces involved in typical situations on a public road

Describe in full, the term inertial mass.

State Newton's third law

Identify the action reaction pairs.

Describe the conservation of momentum in collisions

Describe examples of momentum in collisions

In a crash test two identical cars of mass 900 kg move towards each other. Before impact, Car P has a speed of 14 m/s and Car Q has a speed of 18 m/s.

- i) Work out the total momentum of the two cars before impact.
- ii) After impact the cars move off together to the left. Calculate the speed that the two cars move off at after impact.

d	S	t
	15	28
	7	17
700		35
500		60
200	8	
1700	75	

d	S	t
	0.3	180
	55.5	0.4
450		22
320		16
52 000	64.5	
6400	330	

а	Δv	t
	30	10
	40	5
2		30
10		19
6	84 24	
3	24	

а	Δv	t
	4	5
	8	50
5.3		22
4		6.2
30	9	
5	1250	

g	m	W
	400	2000
	1.9	50
1.6		34
10		82
10	5	
10	90	

g	m	W
	175	1825
	0.4	0.55
9.81		254
2.5		12 000
9.81	0.05	
23	45.3	

а	F	m
	35	7
	84	6
5		10
7		94
8	64	
10	125	

а	F	m
	4	0.64
	7.1	238
6.8		1237
9.42		0.56
3.5	20.5	
7.25	109	

		d	Distance Travelled	m
1	$d = s \times t$	S	Speed	m/s
		t	Time Taken	S
	Λ12	а	Acceleration	m/s ²
2	$a = \frac{\Delta v}{}$	Δν	Change in Velocity	m/s
	a-t	t	Time Taken	S
		а	Acceleration	m/s ²
3	$F = m \times a$	F	Force	N
		m	Mass	kg
		g	Gravitational Field Strength	N/kg
4	$W = m \times g$	m	Mass	kg
	0	W	Weight	N
		m	Mass	kg
5	$p = m \times v$	p	Momentum	kg m/s
	•	v	Velocity	m/s

m	р	V
	100	5
	98	7
7		3
5		12
50	125	
15	105	

m	р	v
	460 000	15
	0.27	90
20 000		4.5
0.0056		82
325	7.5 × 10 ⁴	
1.3 × 10 ³	351	

1. Weight – assume g=9.8N/kg on Earth:

- a. Calculate the weight of a 45kg girl
- b. A box weighs 49N. What is its mass?
- c. A 85kg astronaut in orbit weighs only 23mN. What is the gravitational field strength?

Distance and speed:

- a. Calculate the distance a car will travel in 30s when moving at 12m/s.
- b. How long will it take a pupil to walk to a lesson 70m away at 1.5m/s?
- c. What is the speed (in m/s) of a car that travels 30km in 45 minutes?

3. Acceleration and speed:

- a. Calculate the acceleration of a sprinter who takes 0.70s to reach their maximum speed of 11m/s.
- b. A penny dropped accelerates at 9.8m/s². How fast will it travel when it hits the bottom 3.6s later?
- c. How many seconds will it take a car to accelerate from 45km/hr to 90km/hr at 1.5m/s²?
- Force and acceleration:
- a. Calculate the force necessary to accelerate a 10kg mass by 17m/s².
- b. What acceleration will a car of mass 1100kg experience if a force of 550N acts on it?
- c. An aircraft's engines provide a thrust of 240kN. What is its mass if it accelerates by 8.0m/s²?

5 Momentum:

- a. Calculate the momentum of a bullet of mass 0.010kg travelling at 400m/s.
- b. A bike and rider have a combined momentum of 1000kgm/s. If their velocity is 12m/s, what is their combined mass?
- c. What is the velocity of a 58g tennis ball with a momentum of 2.4kgm/s?

CP3 Revision Mat – Grade 4 - Grade 5

3.3 Draw and annotate diagrams to represent a) a bike pressing the brakes b) a burning match c) a swinging pendulum

Explain what is meant by conservation of energy		
Describe the stores and pathways when:		
a an object is projected upwards or up a slope		
b a moving object hitting an obstacle		
c an object being accelerated by a constant force		
d a vehicle slowing down		
e bringing water to a boil in an electric kettle		
When there are energy in a closed		
system there isto the total energy in that system		
Explain using the term "dissipate" what happens when a mechanical system is in operation.		

Des a)		n-useful energ brakes on a bik		these systems.	Explain how lubrication and un-useful energy transfers.	d insulation can stop reduce these
a)	Electricity	y flowing throu	ıgh power lir	nes		
a)	A running	g engine			Describe the effects of the conductivity of the walls of	thickness and thermal fa building on its rate of cooling.
a)	A swingin	ng pendulum				
a)	A mug of	coffee			Explain how efficiency can	be increased in energy systems.
	CHEMICAL	GRAVITY	KINETIC	THERMAL	Explain patterns and trends including fossils fuel use ar	s in the use of energy resources and renewable resources.
	WA .	(0) (0) (0) (0)				
	ELASTIC OUTCO	VIBRATION	NUCLEAR	ELECTRIC-MAGNETIC	Advantages	Disadventages

Energy Source	Formation / Generation	Uses	Advantages	Disadvantages
Fossil fuels				
Nuclear fuels				
Bio-fuel				
Wind				
Hydroelectricity				
Tides				
Solar				

8

$$efficiency = \frac{useful\ energy\ out}{total\ energy\ in}$$

Efficiency	Useful Out	Total In
	1500	2000
	60	300
0.50		2000
0.20		600
0.90	200	
0.05	4000	

Efficiency	Useful Out	Total In
	10	200
	1050	1500
6%		50 000
57%		2530
85%	5990	
35%	2100	

1. <u>Efficiency and energy:</u>

- a. Calculate the efficiency of a device that usefully shifts 20J of energy when supplied with 50J.
- b. A microwave oven has an efficiency of 60%. How much does the internal energy store of a bowl of baked beans increased when 80 000J of energy is supplied to the oven?
- c. A wind farm has an efficiency of 0.17. If it supplies 120TJ of energy to the National Grid, how much energy was in the wind's kinetic store?

2. Efficiency and power:

- a. Calculate the efficiency of a 60W lightbulb that emits 2.0W of visible light.
- b. A washing machine has an efficiency of 20%. If the power supplied is 1 200W, how much power is usefully shifted?
- c. Steam trains have very low efficiencies around 5.0%. If it needed 50MW to pull the carriages, what power must have been supplied?

CP4 Revision Mat – Grade 4 - Grade 5		
Waves transfer and without transferring	Describe longitudinal waves:	Explain why different object have different colours.
Describe how you could prove that sound waves travel through air, not that air travels from source to receptor.	Describe transverse waves:	Explain why white objects are white and black objects are black.
	Describe the difference between longitudinal and transverse waves by referring to sound, electromagnetic, seismic and	Explain why some objects are translucent and some are transparent.
Describe how you could prove that water waves travel through water, not that water travels from source to receptor.	water waves	Explain how colour filters work.
		What would a blue and yellow jersey look like underneath a yellow filter. Explain your answer.
Identify and define the terms: frequency, wavelength, amplitude, period, wave velocity and wave-front as applied to waves. Annotate the diagram appropriately.	Describe how to measure the velocity of sound in air and ripples on water surfaces.	Explain how to measure the speed, frequency and wavelength of a wave in a solid bar and waves in a ripple tank. Include a simple apparatus list and the calculations you would use.
0.5		
	Explain how waves will be refracted at a boundary in terms of the change of direction and speed	

Calculate the following, giving your answer in standard form, correct to three significating figures.	5. The sun is approximately $1.5 \times 10^{11} m$ from Earth. Given speed of light is approximately $3 \times 10^8 ms^{-1}$, how long does it take light from the sun to reach Earth?
(a) $6.7 \times 10^3 + 4.8 \times 10^4$	Give your answer in minutes and seconds.
(a) 0.7 × 10 + 1.0 × 10	
(b) $1.62 \times 10^7 - 9.83 \times 10^5$	
(c) $2.04 \times 10^9 \times 3.66 \times 10^3$	(2 marks)
(d) 3.427 × 10 ⁸ + 6.841 × 10 ⁴	6. The formula that links wavelength (λ) and frequency (f), is $\lambda \times f = 3 \times 10^8 ms^{-1}$
	(a) Green light has a wavelength of approximately $5 \times 10^{-7} m$. Calculate its frequency
(4 Ma	giving your answer in standard form.
Calculate the following, giving your answer in standard form, correct to three significating figures.	nt
(a) $9.5 \times 10^{-3} + 7.3 \times 10^{-2}$	(b) Red light has a frequency of approximately $4 \times 10^{14} Hz$. Calculate its wavelength giving your answer in standard form.
(b) $4.82 \times 10^{-9} - 6.31 \times 10^{-11}$	••••
(6) 102 × 10	
(c) $4.12 \times 10^4 \times 9.59 \times 10^{-8}$	<i>m</i>
	(4 marks)
(d) $1.01 \times 10^{-7} \div 2.37 \times 10^{3}$	7. If $x = 4.1 \times 10^5$, $y = 7.7 \times 10^{-2}$ and $z = 3.9 \times 10^7$, calculate the following, giving your answers in standard form to 3 sig. fig.
(4 Ma	$(a) \xrightarrow{x+y}$
	<u>.</u>
3. Grains of sand range in size from $2 \times 10^{-3} m$ to $64 \times 10^{-2} m$	
(a) What is the difference between the smallest and largest grains of sand?	(b) $\frac{y^2}{x}$
Give your answer in metres, in standard form.	
(b) What is your answer to part (a), when written in millimetres?	(c) $\sqrt{\frac{xy}{(z-x)}}$
(2 Ma	rks)
© Pinpointlearning.co.uk	(6 marks)

		f	Frequency	Hz
9	$v = f \times \lambda$	λ	Wavelength	m
	,	V	Wave Speed	m/s
	d	d	Distance	m
10	$v = \frac{a}{-}$	t	Time	S
	t	V	Wave Speed	m/s

λ	v
0.3	7
0.4	5
	256
	330
12	
20	
	0.3 0.4

f	λ	V
	1500	400
	7.5 × 10 ⁻⁷	30 000 000
525		215
7 × 10 ¹⁴		30 000 000
1.2	256	
360 000	0.0004	

d	t	v
	300	500
	0.25	80
30 000		750
10 680		445
144 000	720	
2112	6	

t	v
20	17
10	15
	64
	14
25	
0.05	
	20 10 25

1. Wave speed equation:

- a. Calculate the speed of a water wave with a wavelength of 10m and a frequency of 0.25Hz.
- b. The speed of sound is 340m/s. What is the wavelength of a sound wave with a frequency of 256Hz?
- c. All electromagnetic waves travel at the same speed: 3.0×108m/s. What is the frequency of green light, having a wavelength of 540nm?

CP5 Revision Mat – Grade 4 - Grade 5

travel at ______, in a vacuum

All electromagnetic waves are ______, that they

Identify the sources and receivers of the examples below.			
5.9 Describe an investigation into the angles of incidence and refraction in a perspex block.			
Explain how radio waves can be generated, transmitted and received using electrical circuits.			

Fill in the table and indicate which type of E.M. radiation can be seen with the naked eye.

F & λ	Туре	Application
Low		
Long		
High		
Short		

	E.M.	Associated Dangers
_	microwaves	
_	infrared	
_	ultraviolet	
- -	x-rays and gamma rays	

Calculate the following, giving your answer in standard form, correct to three significating figures.	5. The sun is approximately $1.5 \times 10^{11} m$ from Earth. Given speed of light is approximately $3 \times 10^8 ms^{-1}$, how long does it take light from the sun to reach Earth?
(a) $6.7 \times 10^3 + 4.8 \times 10^4$	Give your answer in minutes and seconds.
(a) 0.7 × 10 + 1.0 × 10	
(b) $1.62 \times 10^7 - 9.83 \times 10^5$	
(c) $2.04 \times 10^9 \times 3.66 \times 10^3$	(2 marks)
(d) 3.427 × 10 ⁸ + 6.841 × 10 ⁴	6. The formula that links wavelength (λ) and frequency (f), is $\lambda \times f = 3 \times 10^8 ms^{-1}$
	(a) Green light has a wavelength of approximately $5 \times 10^{-7} m$. Calculate its frequency
(4 Ma	giving your answer in standard form.
Calculate the following, giving your answer in standard form, correct to three significating figures.	nt
(a) $9.5 \times 10^{-3} + 7.3 \times 10^{-2}$	(b) Red light has a frequency of approximately $4 \times 10^{14} Hz$. Calculate its wavelength giving your answer in standard form.
(b) $4.82 \times 10^{-9} - 6.31 \times 10^{-11}$	••••
(6) 102 × 10	
(c) $4.12 \times 10^4 \times 9.59 \times 10^{-8}$	<i>m</i>
	(4 marks)
(d) $1.01 \times 10^{-7} \div 2.37 \times 10^{3}$	7. If $x = 4.1 \times 10^5$, $y = 7.7 \times 10^{-2}$ and $z = 3.9 \times 10^7$, calculate the following, giving your answers in standard form to 3 sig. fig.
(4 Ma	$(a) \xrightarrow{x+y}$
	<u>.</u>
3. Grains of sand range in size from $2 \times 10^{-3} m$ to $64 \times 10^{-2} m$	
(a) What is the difference between the smallest and largest grains of sand?	(b) $\frac{y^2}{x}$
Give your answer in metres, in standard form.	
(b) What is your answer to part (a), when written in millimetres?	(c) $\sqrt{\frac{xy}{(z-x)}}$
(2 Ma	rks)
© Pinpointlearning.co.uk	(6 marks)

		f	Frequency	Hz
9	$v = f \times \lambda$	λ	Wavelength	m
	,	V	Wave Speed	m/s
	d	d	Distance	m
10	$v = \frac{a}{-}$	t	Time	S
	t	V	Wave Speed	m/s

λ	v
0.3	7
0.4	5
	256
	330
12	
20	
	0.3 0.4

f	λ	V
	1500	400
	7.5 × 10 ⁻⁷	30 000 000
525		215
7 × 10 ¹⁴		30 000 000
1.2	256	
360 000	0.0004	

d	t	v
	300	500
	0.25	80
30 000		750
10 680		445
144 000	720	
2112	6	

t	v
20	17
10	15
	64
	14
25	
0.05	
	20 10 25

1. Wave speed equation:

- a. Calculate the speed of a water wave with a wavelength of 10m and a frequency of 0.25Hz.
- b. The speed of sound is 340m/s. What is the wavelength of a sound wave with a frequency of 256Hz?
- c. All electromagnetic waves travel at the same speed: 3.0×108m/s. What is the frequency of green light, having a wavelength of 540nm?

CP6 Revision Mat – Grade 4 - Grade 5

Label the atom with the names, masses and charges of the subatomic particles and the general areas of the atom. The atom is neutral.

The diameter of a nucleu	us ism and the	
diameter of an atom is_	m.	

Define the term isotope and complete the table below:

Element		Mass No	Atomic No	Protons	Neutrons	Electrons
12 14	14					
C 6						
35	37					
	17					
Fynlain wh	v icotono	c can ctil	l ha naut	ral		

Explain why	isotope	s can stil	ll be neu	⊥ tral.	
лр.а т т.,	isotope	.5 0411 5611			
Explain why					
					_
LAPIAIII WIII	some e	iectrons	can cnar	ige orbit	S.
			can cnar	ige orbit	S.
				ige orbit	S.
	some e	ectrons	can cnar	ige orbit	S.
Explain willy	some e	lectrons	can cnar	ige orbit	S.
Explain how electron orl	ı atoms (can beco			

Type of nuclear decay	Symbol	Cause of Decay	Structure	Charge	Mass	Ionisation (High – Low)	Penetration (High – Low)
Alpha							
Beta minus							
Positron							
Gamma							

=	meant by background radi	ation including
the most comm	on sources.	
	hod for measuring and det	_
	ing Photographic film and	a Geiger–Müller
tube		
		·····
Complete the to model.	able below describing the	changing atomic
Pre 1900	Pre 1911	1911 to present
_		>

Decay	Effect on Mass Number	Effect on Proton Number
Alpha		
Beta minus		
Positron		
Gamma		
Neutron		

Balance the nuclear equat	tions below.
$^{238}U \longrightarrow Th + ^{4}_{2}He$	200- (a) 175- 175- 150-
$_{6}^{14}C \longrightarrow N +_{-1}^{0}e$	Counting per minute) (Counting per minute) (Counting per minute) (Counting per minute) (Counting per minute)
$Tc \longrightarrow_{43}^{99} Tc + \gamma$	28-
	Time (hours)

Define the term half life and identify the half life in the

Explain how half life can be predicted and the conditions required for this to occur.

A frozen mammoth body has been found in ice in Norway. The Norwegian government has given you a 1 kg sample of the body. For 1 kg of living mammoth flesh, the activity would be 4000 becquerel (Bq) from carbon-14 decay. Your sample gives a reading of 250 Bq. Half life is 5700 years.

A How many half-lives must have passed for the activity to change from 4000 Bq to 250 Bq?

B How long ago did the mammoth die?

Describe the dangers of ionising radiation in terms of tissue damage and possible mutations and relate this to the precautions needed

What is the half-life of these isotopes.

- What are possible unit for half life?
- 2. A radioactive isotope has a half life of 14 days. It has an initial count rate of 1080Bq. What will the count rate be after 4 weeks?
- 3. A radioactive isotope has a half life of 15 minutes. It has an initial count rate of 36000 Bq. What will the count rate be after 1.5 hours?
- 4. A radioactive isotope has a half life of 5000 years. What fraction of the radioactive material will remain after 20000 years?
- 5. A radioactive isotope has a count rate 0f 4000Bq and a half life of 12 hours. How long will it take the count rate to drop to 500Bq?
- 5. Use the graph to find the half-life of Plutonium-238.
- A radioactive isotope has a count rate 0f 6400Bq and a half life of 4days. What fraction of the isotope will have decayed after 20 days? What will the count rate now be?
 - Before an isotope is placed near the detector a counter givers a reading of 14Bq. When the isotope is placed near the reading increases to 2234Bq. When tested 30 minutes later the count rate has dropped to 569 Bq. What is the half life of the substance?
- Uranium-238 has a half-life of 4500 million years. Complete the graph to show the number of nuclei in a sample of U-238 will change over time. Initially there are 100,000 nuclei in the sample.

